




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
8.2 消元(1)教学目标1.使学生学会用代人消元法解二元一次方程组;2.理解代人消元法的基本思想体现的化未知为已知的化归思想方法;教学难点代入消元法的基本思想知识重点用代入法解二元一次方程组教学过程(师生活动)设计理念创设情境引入课题体育节要到了篮球是初一(1)班的拳头项目为了取得好名次,他们想在全部22场比赛中得到40分已知每场比赛都要分出胜负,胜队得2分,负队得1分那么初一(1)班应该胜、负各几场?你会用二元一次方程组解决这个问题吗?根据问题中的等量关系设胜x场,负y场,可以更容易地列出方程 那么有哪些方法可以求得二元一次方程组的解呢? 问题情境是学生喜闻乐见的体育活动,增强求知欲,对所学知识产生亲切感.探究新知1.回顾:什么是二元一次方程组的解?(方程组中各个方程的公共解)2.师:这个问题能用一元一次方程来解决吗? 学生思考并列出式子 设胜x场,负(22x)场,解方程 2x(22x) =40 观察:上面的二元一次方程组和一元一次方程有什么关系? 结合学生的回答,教师做出讲解 由方程进行移项得y=22x, 由于方程中的y与方程中的y都表示负的场数,故可以把方程中的y用(22- x)来代换, 即得2x+(22x) =40.由此一来,二元化为一元了 解得x=18. 问题解完了吗?怎样求y 将x=18代入方程y=22x,得y=4. 能代入原方程组中的方程来求y吗?代入哪个方程更简便? 这样,二元一次方程组的解是 归纳:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法探究:对于x+2y=5,思考下列问题:()用含y的式子表示x;()用含x的式子表示y;从比较中寻找解决问题的方案. 重视知识的发生过程,让学生了解代入消元法解二元一次方程组的过程及依据体会未知向已知,陌生向熟悉转化这一重要思想化归思想探究重点在说明如何用含一个未知数的式子去表示另一未知数.巩固新知例1 用代入法解方程组 解:把变形为代入,得 3(y3)-8y14 所以y=1 把y=1代人,得x=2. 所以 解后反思教师引导学生思考下列问题: (1)选择哪个方程代人另一方程?其目的是什么? (2)为什么能代? (3)只求出一个未知数的值,方程组解完了吗? (4)把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便? (5)怎样知道你运算的结果是否正确呢? (与解一元一次方程一样,需检验其方法是将求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等检验可以口算,也可以在草稿纸上验算) 例2解方程组 分析: 从方程的结构来看:选用哪个方程变形较简便呢?通过观察,发现方程中y的系数为1,因此,可先将方程变形,用含x的代数式表示y,再代入方程求解 练习:(1) (2)例3根据市场调查,某种消毒液的大瓶装(500g)和小瓶装(250 g)两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5吨,这些消毒液应该分装大、小瓶装两种产品各多少瓶? 学生独立分析,列出方程组,全班交流 解:设这些消毒液应分装x大瓶和y小瓶,则 引导学生思考: 问题1:此方程与我们前面遇到的二元一次方程组有什么区别? (两个方程里的两个未知数系数的绝对值均不为1) 问题2:能用代入法来解吗? 问题3:选择哪个方程进行变形?消去哪个未知数?例1让学生了解代入法的一般过程并进行反思体会代入消元的思想. 例2进一步分析巩固代入法的基本步骤 重点在于如何选择一个方程进行变形通过两道简单的练习题熟悉并掌握代入法的基本解题过程.例3 在应用中进一步掌握解题技巧.小结与作业小结提高合作交流:你从上面的学习中体会到代人法的基本思路是什么?主要步骤有哪些呢?与你的同伴交流 学生畅所欲言,互相补充,小组派中心发言人进行总结发言最后,由老师出示幻灯片 代入法的实质是消元,使两个未知数转化为一个未知数一般步骤为: 从方程组中选一个未知数系数比较简单的方程将这个方程中的一个未知数,例如y,用含x的式子表示出来,也就是化成y=axb的形式; 将y=axb代人方程组中的另一个方程中,消去y,得到关于二的一元一次方程; 解这个一元一次方程,求出x的值; 把求得的x值代人方程y=axb中,求出y的值,再写出方程组解的形式; 检验得到的解是不是原方程组的解这一步不是完全必要的,若能肯定解题无误,这一点可以省略。及时梳理知识,强化代入法解二元一次方程一般步骤。布置作业长江作业:8.2消元解二元一次方程组(1)课堂设计理念 代入消元法体现了数学学习中“化未知为已知”的化归思想方法,化归的原则就是将不熟悉的问题化归为比较熟悉的问题,从而充分调动已有的知识和经验,用于解决新问题基于这点认识,本课按照“身边的数学问题引入寻求一元一次方程的解法探索二元一次方程组的代入消元法典型例题归纳代入法的一般步骤”的思路进行设计在教学过程中,充分调动学生的主观能动性和发挥教师的主导作用,坚持启发式教学教师创设有趣的情境,引发学生自觉参与学习活动的积极性,使知识发现过程融于有趣的活动中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业互联网应用案例解析与企业数字化转型实践经验分享
- 浙江省浙南名校联盟2025-2026学年高二上学期开学联考历史试卷
- 运城市小学考试试题及答案
- 2025年石油公司加油站人员安全操作知识考试题(附含答案)
- 2025年公共文秘教程考试题及答案
- 2025年山西省长治市事业单位工勤技能考试题库(含答案)
- 2025年山东省淄博市事业单位工勤技能考试考试题库及参考答案
- CN120111859A 一种散热组件及电子设备 (南昌华勤电子科技有限公司)
- U型吊安全事故培训课件
- CN120105831B 一种电机铁芯冲压模具装配面高保真快速建模方法及系统 (杭州电子科技大学)
- 2025至2030中国PCIE行业项目调研及市场前景预测评估报告
- 2025年cnc初级技工考试题及答案
- 露天煤矿无人驾驶技术应用发展报告
- 汽车吊吊装专项施工方案
- 复变函数与积分变换全套课件
- 装配式建筑设计专篇(word6)
- Matlab-Simulink模型检查验证与测试
- 单位减少存档人员表
- 潮流玩具行业研究报告
- 高一新生入学家长会课件(PPT 23页)
- 四川省初中毕业生登记表
评论
0/150
提交评论