2014高考数学一轮汇总训练《数列求和》理新人教A版.doc_第1页
2014高考数学一轮汇总训练《数列求和》理新人教A版.doc_第2页
2014高考数学一轮汇总训练《数列求和》理新人教A版.doc_第3页
2014高考数学一轮汇总训练《数列求和》理新人教A版.doc_第4页
2014高考数学一轮汇总训练《数列求和》理新人教A版.doc_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

备考方向要明了考 什 么怎 么 考熟练掌握等差、等比数列的前n项和公式.1.以选择题或填空题的形式考查可转化为等差或等比数列的数列求和问题,如2012年新课标全国T16等2.以解答题的形式考查利用错位相减法、裂项相消法或分组求和法等求数列的前n项和,如2012年江西T16,湖北T18等.归纳知识整合数列求和的常用方法1公式法直接利用等差数列、等比数列的前n项和公式求和(1)等差数列的前n项和公式:Snna1d;(2)等比数列的前n项和公式:Sn2倒序相加法如果一个数列an的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和即是用此法推导的3错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和就是用此法推导的4裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和探究1.应用裂项相消法求和的前提条件是什么?提示:应用裂项相消法求和的前提条件是数列中的每一项均可分裂成一正一负两项,且在求和过程中能够前后抵消2利用裂项相消法求和时应注意哪些问题?提示:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或前面剩下两项,后面也剩下两项5分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减6并项求和法一个数列的前n项和,可两两结合求解,则称之为并项求和形如an(1)nf(n)类型,可采用两项合并求解例如,Sn10029929829722212(10099)(9897)(21)5 050.自测牛刀小试1.等于()A.B.C1 D3解析:选A,.2已知数列an的通项公式是an,其前n项和Sn,则项数n等于()A13B10C9D6解析:选Dan1,Snnnnn1.n15,解得n6.3(教材习题改编)(2351)(4352)(2n35n)_.解析:(2351)(4352)(2n35n)(242n)3(51525n)3n(n1)n2n5n.答案:n2n5n4若Sn1234(1)n1n,则S100_.解析:S10012345699100(12)(34)(56)(99100)50.答案:505已知数列an的前n项和为Sn且ann2n,则Sn_.解析:ann2n,Sn121222323n2n.2Sn122223(n1)2nn2n1.得Sn222232nn2n1n2n12n12n2n1(1n)2n12.Sn2n1(n1)2.答案:(n1)2n12分组转化求和例1(2012山东高考)在等差数列an中,a3a4a584,a973.(1)求数列an的通项公式;(2)对任意mN*,将数列an中落入区间(9m,92m)内的项的个数记为bm,求数列bm的前m项和Sm.自主解答(1)因为an是一个等差数列,所以a3a4a53a484,a428.设数列an的公差为d,则5da9a4732845,故d9.由a4a13d,得28a139,即a11.所以ana1(n1)d19(n1)9n8(nN*)(2)对mN*,若9man92m,则9m89n0,a10.由已知有化简得又a10,故q2,a11.所以an2n1.(2)由(1)知,bn2a24n12.因此Tn(144n1)2n2n(4n41n)2n1.裂项相消法求和例2设数列an的前n项和为Sn,已知a11,Snnann(n1)(n1,2,3,)(1)求证:数列an为等差数列,并写出an关于n的表达式;(2)若数列的前n项和为Tn,问满足Tn的最小正整数n是多少?自主解答(1)当n2时,anSnSn1nan(n1)an12(n1),得anan12(n2,3,4,)所以数列an是以1为首项,2为公差的等差数列所以an2n1.(2)Tn,由Tn,得n,所以满足Tn的最小正整数n为12.用裂项相消法求和应注意的问题利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项,再就是将通项公式裂项后,有时候需要调整前面的系数,使裂开的两项之差与系数相乘后与原项相等2等比数列an的各项均为正数,且2a13a21,a9a2a6.(1)求数列an的通项公式;(2)设bnlog3a1log3a2log3an,求数列的前n项和解:(1)设数列an的公比为q.由a9a2a6得a9a,所以q2.由条件可知q0,故q.由2a13a21得2a13a1q1,所以a1.故数列an的通项公式为an.(2)bnlog3a1log3a2log3an(12n).故2.2.所以数列的前n项和为.错位相减法求和例3(2012天津高考)已知an是等差数列,其前n项和为Sn,bn是等比数列,且a1b12,a4b427,S4b410.(1)求数列an与bn的通项公式;(2)记Tna1b1a2b2anbn,nN*,证明Tn8an1bn1(nN*,n2)自主解答(1)设等差数列an的公差为d,等比数列bn的公比为q.由a1b12,得a423d,b42q3,S486d.由条件,得方程组解得所以an3n1,bn2n,nN*.(2)证明:由(1)得Tn22522823(3n1)2n,2Tn222523(3n4)2n(3n1)2n1.由,得Tn2232232332n(3n1)2n1(3n1)2n12(3n4)2n18,即Tn8(3n4)2n1.而当n2时,an1bn1(3n4)2n1,所以Tn8an1bn1,nN*,n2.若本例(2)中Tnanb1an1b2a1bn,nN*,求证:Tn122an10bn(nN*)证明:由(1)得Tn2an22an123an22na1,2Tn22an23an12na22n1a1.,得Tn2(3n1)32232332n2n22n26n2102n6n10.而2an10bn122(3n1)102n12102n6n10,故Tn122an10bn,nN*. 用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“SnqSn”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解3已知等差数列an的前3项和为6,前8项和为4.(1)求数列an的通项公式;(2)设bn(4an)qn1(q0,nN*),求数列bn的前n项和Sn.解:(1)设an的公差为d.由已知得解得a13,d1.故an3(n1)(1)4n.(2)由(1)得,bnnqn1,于是Sn1q02q13q2nqn1.若q1,将上式两边同乘以q有qSn1q12q2(n1)qn1nqn.两式相减得到(q1)Snnqn1q1q2qn1nqn.于是,Sn.若q1,则Sn123n.所以Sn1种思想转化与化归思想数列求和把数列通过分组、变换通项、变换次序、乘以常数等方法,把数列的求和转化为能使用公式求解或者能通过基本运算求解的形式,达到求和的目的2个注意“裂项相消法求和”与“错位相减法求和”应注意的问题(1)使用裂项相消法求和时,要注意正负项相消时,消去了哪些项,保留了哪些项,切不可漏写未被消去的项,未被消去的项有前后对称的特点(2)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解4个公式常见的拆项公式(1);(2);(3);(4)().答题模板利用错位相减法解决数列求和典例(2012江西高考)(本小题满分12分)已知数列an的前n项和Snn2kn(其中kN),且Sn的最大值为8.(1)确定常数k,求an;(2)求数列的前n项和Tn.快速规范审题第(1)问1审条件,挖解题信息观察条件:Snn2kn及Sn的最大值为8当nk时,Sn取得最大值2审结论,明确解题方向观察所求结论:求k的值及anSn的最大值为8,即Sk8,k4. Snn24n.3建联系,找解题突破口根据已知条件,可利用an与Sn的关系求通项公式:求通项公式anSnSn1n(n2),a1S1ann.第(2)问1审条件,挖解题信息观察条件:ann及数列.2审结论,明确解题方向观察所求结论:求数列的前n项和Tn可利用错位相减法求和3建联系,找解题突破口条件具备,代入求和:Tn12Tn22:2TnTn214.准确规范答题(1)当nkN时,Snn2kn取得最大值,即8Skk2k2k2,(2分)利用anSnSn1时,易忽视条件n2.故k216,因此k4,(3分)从而anSnSn1n(n2)(4分)又a1S1,(5分)所以ann.(6分)(2)因为,错位相减时,易漏项.所以Tn1,(7分)所以2Tn22,(8分):2TnTn2144.(11分)所以Tn4.(12分)答题模板速成用错位相减法解决数列求和的步骤:第一步判断结构第二步乘公比第三步错位相减第四步求和若数列anbn是由等差数列an与等比数列(公比q)的对应项之积构成的,则可用此法求和设anbn的前n项和为Tn,然后两边同乘以q乘以公比q后,向后错开一位,使含有qk(kN*)的项对应,然后两边同时作差将作差后的结果求和,从而表示出Tn一、选择题(本大题共6小题,每小题5分,共30分)1已知an是首项为1的等比数列,Sn是an的前n项和,且9S3S6,则数列的前5项和为()A.或5B.或5C. D.解析:选C设数列an的公比为q.由题意可知q1,且,解得q2,所以数列是以1为首项,为公比的等比数列,由求和公式可得S5.2数列1,3,5,7,(2n1),的前n项和Sn的值等于()An21 B2n2n1Cn21 Dn2n1解析:选A该数列的通项公式为an(2n1),则Sn135(2n1)n21.3设Sn为等差数列an的前n项和,若S830,S47,则a4的值等于()A. B.C. D.解析:选C由题意可得解得故a4a13.4.等于()A. B.C. D.解析:选B令Sn,则 Sn,得:Sn,故Sn.5已知数列an的通项公式为ann2cos n(nN*),Sn为它的前n项和,则等于()A1 005 B1 006C2 011 D2 012解析:选B注意到cos n(1)n(nN*),故an(1)nn2.因此有S2 012(1222)(3242)(2011220122)1232 0112 0121 0062 013,所以1 006.6(2013锦州模拟)设函数f(x)xmax的导函数f(x)2x1,则数列(nN*)的前n项和是()A. B.C. D.解析:选Af(x)mxm1a,m2,a1.f(x)x2x,f(n)n2n.,令Sn1.二、填空题(本大题共3小题,每小题5分,共15分)7(2012江西高考)等比数列an的前n项和为Sn,公比不为1.若a11,且对任意的nN*都有an2an12an0,则S5_.解析:由an2an12an0,得anq2anq2an0,显然an0,所以q2q20.又q1,解得q2.又a11,所以S511.答案:118对于数列an,定义数列an1an为数列an的“差数列”,若a12,an的“差数列”的通项公式为2n,则数列an的前n项和Sn_.解析:an1an2n,an(anan1)(an1an2)(a2a1)a12n12n2222222n222n.Sn2n12.答案:2n12.9数列an的通项ann(nN*),其前n项和为Sn,则S2 013_.解析:annncos n,a11,a22,a33,a44,S2 013(1)2(3)4(5)6(2 009)2 010(2 011)2 012(2 013)(1)2(3)4(5)6(2 009)2 010(2 011)2 012(2013)11112 0131 0062 0131 007.答案:1 007三、解答题(本大题共3小题,每小题12分,共36分)10(2012湖北高考)已知等差数列an前三项的和为3,前三项的积为8.(1)求等差数列an的通项公式;(2)若a2,a3,a1成等比数列,求数列|an|的前n项和解:(1)设等差数列an的公差为d,则a2a1d,a3a12d,由题意得解得或所以由等差数列通项公式可得an23(n1)3n5或an43(n1)3n7.故an3n5或an3n7.(2)当an3n5时,a2,a3,a1分别为1,4,2,不成等比数列;当an3n7时,a2,a3,a1分别为1,2,4,成等比数列,满足条件故|an|3n7|记数列|an|的前n项和为Sn.当n1时,S1|a1|4;当n2时,S2|a1|a2|5;当n3时,SnS2|a3|a4|an|5(337)(347)(3n7)5n2n10.当n2时,满足此式综上可知,Sn11(2013合肥模拟)数列an的前n项和记为Sn,a1t,点(Sn,an1)在直线y3x1上,nN*.(1)当实数t为何值时,数列an是等比数列(2)在(1)的结论下,设bnlog4an1,cnanbn,Tn是数列cn的前n项和,求Tn.解:(1)点(Sn,an1)在直线y3x1上,an13Sn1,an3Sn11(n1,且nN*)an1an3(SnSn1)3an,即an14an,n1.又a23S113a113t1,当t1时,a24a1,数列an是等比数列(2)在(1)的结论下,an14an,an14n,anbn4n1n,Tnc1c2cn(401)(412)(4n1n)(14424n1)(123n).12已知数列an的前n项和为Sn,且满足Snn2an(nN*)(1)证明:数列an1为等比数列,并求数列an的通项公式;(2)若bn(2n1)an2n1,数列bn的前n项和为Tn.求满足不等式2 013的n的最小值解:(1)证明:因为Snn2an,即Sn2ann,所以Sn12an1(n1)(n2,nN*)两式相减化简,得an2an11.所以an12(an11)(n2,nN*)所以数列an1为等比数列因为Snn2an,令n1,得a11.a112,所以an12n,即an2n1.(2)因为bn(2n1)an2n1,所以bn(2n1)2n.所以Tn3252272

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论