




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
徐州26如图,菱形ABCD中,AB=5cm,动点P从点B出发,沿折线BCCDDA运动到点A停止,动点Q从点A出发,沿线段AB运动到点B停止,它们运动的速度相同,设点P出发xs时,BPQ的面积为ycm2,已知y与x之间的函数关系如图所示,其中OM,MN为线段,曲线NK为抛物线的一部分,请根据图中的信息,解答下列问题:(1)当1x2时,BPQ的面积不变(填“变”或“不变”);(2)分别求出线段OM,曲线NK所对应的函数表达式;(3)当x为何值时,BPQ的面积是5cm2?【考点】LO:四边形综合题【分析】(1)根据函数图象即可得到结论;(2)设线段OM的函数表达式为y=kx,把(1,10)即可得到线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x3)2,把(2,10)代入得根据得到曲线NK所对应的函数表达式y=10(x3)2;(3)把y=5代入y=10x或y=10(x3)2即可得到结论【解答】解:(1)由函数图象知,当1x2时,BPQ的面积始终等于10,当1x2时,BPQ的面积不变;故答案为:不变;(2)设线段OM的函数表达式为y=kx,把(1,10)代入得,k=10,线段OM的函数表达式为y=10x;设曲线NK所对应的函数表达式y=a(x3)2,把(2,10)代入得,10=a(23)2,a=10,曲线NK所对应的函数表达式y=10(x3)2;(3)把y=5代入y=10x得,x=,把y=5代入y=10(x3)2得,5=10(x3)2,x=3,3+3,x=3,当x=或3时,BPQ的面积是5cm227如图,将边长为6的正三角形纸片ABC按如下顺序进行两次折叠,展平后,得折痕AD,BE(如图),点O为其交点(1)探求AO到OD的数量关系,并说明理由;(2)如图,若P,N分别为BE,BC上的动点当PN+PD的长度取得最小值时,求BP的长度;如图,若点Q在线段BO上,BQ=1,则QN+NP+PD的最小值=【考点】RB:几何变换综合题【分析】(1)根据等边三角形的性质得到BAO=ABO=OBD=30,得到AO=OB,根据直角三角形的性质即可得到结论;(2)如图,作点D关于BE的对称点D,过D作DNBC于N交BE于P,则此时PN+PD的长度取得最小值,根据线段垂直平分线的想知道的BD=BD,推出BDD是等边三角形,得到BN=BD=,于是得到结论;(3)如图,作Q关于BC的对称点Q,作D关于BE的对称点D,连接QD,即为QN+NP+PD的最小值根据轴对称的定义得到QBN=QBN=30,QBQ=60,得到BQQ为等边三角形,BDD为等边三角形,解直角三角形即可得到结论【解答】解:(1)AO=2OD,理由:ABC是等边三角形,BAO=ABO=OBD=30,AO=OB,BD=CD,ADBC,BDO=90,OB=2OD,OA=2OD;(2)如图,作点D关于BE的对称点D,过D作DNBC于N交BE于P,则此时PN+PD的长度取得最小值,BE垂直平分DD,BD=BD,ABC=60,BDD是等边三角形,BN=BD=,PBN=30,=,PB=;(3)如图,作Q关于BC的对称点Q,作D关于BE的对称点D,连接QD,即为QN+NP+PD的最小值根据轴对称的定义可知:QBN=QBN=30,QBQ=60,BQQ为等边三角形,BDD为等边三角形,DBQ=90,在RtDBQ中,DQ=QN+NP+PD的最小值=,故答案为:28如图,已知二次函数y=x24的图象与x轴交于A,B两点,与y轴交于点C,C的半径为,P为C上一动点(1)点B,C的坐标分别为B(3,0),C(0,4);(2)是否存在点P,使得PBC为直角三角形?若存在,求出点P的坐标;若不存在,请说明理由;(3)连接PB,若E为PB的中点,连接OE,则OE的最大值=【考点】HF:二次函数综合题【分析】(1)在抛物线解析式中令y=0可求得B点坐标,令x=0可求得C点坐标;(2)当PB与相切时,PBC为直角三角形,如图1,连接BC,根据勾股定理得到BC=5,BP2=2,过P2作P2Ex轴于E,P2Fy轴于F,根据相似三角形的性质得到=2,设OC=P2E=2x,CP2=OE=x,得到BE=3x,CF=2x4,于是得到FP2=,EP2=,求得P2(,),过P1作P1Gx轴于G,P1Hy轴于H,同理求得P1(1,2),当BCPC时,PBC为直角三角形,根据相似三角形的判定和性质即可得到结论;(3)如图2,当PB与C相切时,OE的值最大,过E作EMy轴于M,过P作PFy轴于F,根据平行线等分线段定理得到ME=(OB+PF)=,OM=MF=OF=,根据勾股定理即可得到结论【解答】解:(1)在y=x24中,令y=0,则x=3,令x=0,则y=4,B(3,0),C(0,4);故答案为:B(3,0),C(0,4);(2)存在点P,使得PBC为直角三角形,当P1B与相切时,P1BC为直角三角形,如图,连接BC,OB=3OC=4,BC=5,CPBP1,CP1=,BP1=2,过P1作P1Ex轴于E,P1Fy轴于F,则CP1FBP1E,,即PF=2PE,设OE=X,则P1F=X,P1E=2X,BE=3+X,CF=4-2X所以:,则x=1P1E=2,P1F=1,P1(-1,-2),过P2作P2Gx轴于G,P2Hy轴于H,则PBGPCH,设PH=X,则PG=2X,BG=3-X所以,在RtPBG中,由勾股定理得(2X)2+(3-X)2=解得X=,所以P2(,)当BCPC时,PBC为直角三角形,过P3作P3Gy轴,则P3CGCBO所以: 即所以:P3G=,在P3CG中,由勾股定理得CG=所以,P3(,4).过P4作P4Hy轴于H,则P4HCCOB,所以,即,,P4H=,在P4HC中,由勾股定理得CH=所以,P4(,4).综上所述:点P的坐标为:(1,2)或(,)或(,4)或(,4);(3)如右图,连接AP,因为O是AB的中点,E是PB的中点,所以OE是BAP的中位线,所以OE=AP,所以当AP最大时OE最大。而AP过圆心C时,AP最大,AP最大=AC+CP=5+,所以南京24.如图,是的切线,为切点.连接并延长,交的延长线于点,连接,交于点.(1)求证:平分.(2)连结,若,求证.24.证明:(1)如图,连接.是的切线,又,平分.(2),.,.平分,.又,是等边三角形.25.如图,港口位于港口的南偏东方向,灯塔恰好在的中点处,一艘海轮位于港口的正南方向,港口的正西方向的处,它沿正北方向航行5,到达处,测得灯塔在北偏东方向上.这时,处距离港口有多远?(参考数据:)25.解:如图,过点作,垂足为.设.在中, ,.在中, ,.,.又为的中点,.因此,处距离港口大约为35.26.已知函数(为常数)(1)该函数的图像与轴公共点的个数是( )A.0 B.1 C.2 D.1或2(2)求证:不论为何值,该函数的图像的顶点都在函数的图像上.(3)当时,求该函数的图像的顶点纵坐标的取值范围.26.解:(1).(2),所以该函数的图像的顶点坐标为.把代入,得.因此,不论为何值,该函数的图像的顶点都在函数的图像上.(3)设函数.当时,有最小值0.当时,随的增大而减小;当时,随的增大而增大.又当时,;当时,.因此,当时,该函数的的图像的顶点纵坐标的取值范围是.27. 折纸的思考.【操作体验】用一张矩形纸片折等边三角形.第一步,对折矩形纸片(图),使与重合,得到折痕,把纸片展平(图).第二步,如图,再一次折叠纸片,使点落在上的处,并使折痕经过点,得到折痕,折出,得到.(1)说明是等边三角形.【数学思考】(2)如图.小明画出了图的矩形和等边三角形.他发现,在矩形中把经过图形变化,可以得到图中的更大的等边三角形.请描述图形变化的过程.(3)已知矩形一边长为3,另一边长为.对于每一个确定的的值,在矩形中都能画出最大的等边三角形.请画出不同情形的示意图,并写出对应的的取值范围.【问题解决】(4)用一张正方形铁片剪一个直角边长分别为4和1的直角三角形铁片,所需正方形铁片的边长的最小值为 .27.解:(1)由折叠, ,因此,是等边三角形.(2)本题答案不惟一,下列解法供参考.例如,如图,以点为中心,在矩形中把逆时针方向旋转适当的角度,得到;再以点为位似中心,将放大,使点的对应点落在上,得到.(3)本题答案不惟一,下列解法供参考,例如, (4).北京上海2425南通2628苏州25.(本题满分8分)如图,在中,轴,垂足为反比例函数()的图像经过点,交于点已知,(1)若,求的值;(2)连接,若,求的长25.解:(1)作,垂足为,.在中,点的坐标为,点在的图象上,.(2)设点的坐标为.两点的坐标分别为.点都在的图象上,点的坐标为.作轴,垂足为.在中,.26.(本题满分10分)某校机器人兴趣小组在如图所示的矩形场地上开展训练机器人从点出发,在矩形边上沿着的方向匀速移动,到达点时停止移动已知机器人的速度为个单位长度/,移动至拐角处调整方向需要(即在、处拐弯时分别用时)设机器人所用时间为时,其所在位置用点表示,到对角线的距离(即垂线段的长)为个单位长度,其中与的函数图像如图所示(1)求、的长;(2)如图,点、分别在线段、上,线段平行于横轴,、的横坐标分别为、设机器人用了到达点处,用了到达点处(见图)若,求、的值26. (1)作 垂足为,由题意得, 在中, 即 (2)在图中,连接 过分别作的垂线,垂足为 则 . 在图中,线段 平行于横轴, 即. 即 又 设的横坐标分别为 ,由题意得, 27.(本题满分10分)如图,已知内接于,是直径,点在上,过点作,垂足为,连接交边于点(1)求证:;(2)求证:;(3)连接,设的面积为,四边形的面积为,若,求的值27.解:是的直径,. .(2) 和是 所对的圆周角,.(3) ,即 , ,即 . , , ,即 .28.(本题满分10分)如图,二次函数的图像与轴交于、两点,与轴交于点,点在函数图像上,轴,且,直线是抛物线的对称轴,是抛物线的顶点(1)求、的值;(2)如图,连接,线段上的点关于直线的对称点恰好在线段上,求点的坐标;(3)如图,动点在线段上,过点作轴的垂线分别与交于点,与抛物线交于点试问:抛物线上是否存在点,使得与的面积相等,且线段的长度最小?如果存在,求出点的坐标;如果不存在,说明理由28.解:(1) 轴, , 抛物线对称轴为直线 点的坐标为 解得 或 (舍去), (2)设点的坐标为 对称轴为直线点关于直线 的对称点 的坐标为. 直线 经过点 利用待定系数法可得直线的表达式为 .因为点在上, 即点的坐标为(3)存在点 满足题意.设点坐标为 ,则 作 垂足为 点 在直线的左侧时,点的坐标为点的坐标为点的坐标为 在中, 时, 取最小值 .此时点的坐标为 点在直线的右侧时,点的坐标为同理, 时, 取最小值 .此时点的坐标为综上所述:满足题意得点的坐标为和宿迁24.(本题满分8分)如图,在中,点在边上移动(点不与点、重合),满足,且点、分别在边、上(1)求证:;(2)当点移动到的中点时,求证:平分25.(本题满分10分)如图,在平面直角坐标系中,抛物线交轴于、两点(点在点的左侧),将该抛物线位于轴上方曲线记作,将该抛物线位于轴下
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 现场处置方案编制课件
- 2025年能源行业CCS项目经济性研究报告:市场前景与投资建议
- 2025年物流行业物流园区智能化改造对物流行业行业政策法规的适应报告
- 山西省晋中市左权县2022-2023五年级上学期期中科学试题(含答案)
- 2026届贵州省贵阳市清镇北大培文学校贵州校区化学高一上期末考试试题含解析
- 2025年导游资格证专项训练试卷:导游业务与法规冲刺押题
- 2025年Python大数据处理培训试卷:实战演练与冲刺押题
- 2025年秋季初级经济师职业资格考试 经济基础知识模拟试卷及答案
- 2025年注册会计师(CPA)考试 会计科目历2025年真题解析与模拟试卷
- 江西省白鹭洲中学2026届高二化学第一学期期中学业水平测试试题含解析
- 企业信息化项目建设进度和成果汇报课件
- 高等数学期末试卷及答案
- 从0开始跨境电商-第三章-阿里巴巴国际站入门-OK
- 新能源电站远程监控系统建设方案
- 《紫藤萝瀑布》《丁香结》《好一朵木槿花》
- 2023柔性棚洞防护结构技术规程
- 河流地貌的发育 - 侵蚀地貌
- 离网光伏发电系统详解
- 广告文案写作(第二版)全套教学课件
- 《国家电网公司电力安全工作规程(配电部分)》
- 金融学黄达ppt课件9.金融市场
评论
0/150
提交评论