




已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2016 年全国初中数学联赛(决赛)试题 第 1 页 2016 年全国初中数学联合竞赛试题 第一试 (3 月 20 日上午 8:30 - 9:30) 一 、 选择题 (本题满分 42分,每小题 7分) (本题共有 6个小题,每题 均给出了代号为 A,B,C,中有且仅有一个是正确的 每小题选对得 7 分;不选、选错或选出的代号字母超过一个(不论是否写 在括号内),一律得 0 分 .) x 表示不超过 x 的最大整数,把 称为 x 的小数部分 23t , a 是 b 是 t 的小数部分,则 112( ) 1 3 0 元、 15 元和 20 元,某学校计划恰好用 500 元 购买上述图书30 本 ,那么不同的购书方案有 ( ) 9 种 10种 1种 2种 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数” 3 3 3 32 1 ( 1 ) , 2 6 3 1 , 2 和 26 均为“和谐数” 超过 2016 的正整数中,所有的“和谐数”之和为 ( ) 858 860 260 262 3(B) 1 ( 0 )y a x b x a 的图象的顶点在第二象限,且过点 (1,0) 为整数时, ( ) 4 e 的半径 直于弦 交 点 C ,连接 延长交 点 E ,若8,2,则 的面积为 ( ) 2 5 16 8 四边形 , 090B A C B D C , 5C, 1,对角线的交点为 M ,则 ( ) ,足 1,x y z 则 23M x y y z x z 的最大值为 ( ) 2016 年全国初中数学联赛(决赛)试题 第 2 页 二、填空题(本题满分 28 分,每小题 7 分) (本题共有 4个小题,要求直接将答案写在横线上 .) 1.【 1(A)、 2( B) 】 已知 的顶点 A 、 C 在反比例函数 3 0x )的图象上, 090, 030,AB x 轴,点 B 在点 A 的上方,且 6,则点 C 的坐标为 . 1(B)的 最大边 的高线 中线 好把 三等分,3,则 . 2(A), 分 , O 为对角线的交点,,O ,D 则 . 3.【 3(A)、 4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这个六位数恰好为原来两个三位数的乘积的 3 倍, 这个六位数是 . 3(B)p 、 q 满足: 3 4 0 , 1 1 1 ,q p p q 则 最大值 为 . 4(A) 个 1、 5 个 2、 5 个 3、 5 个 4、 5 个 5 共 25 个数填入一个 5 行 5 列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过 这5 个和的最小 值为 M ,则 M 的最大值为 . 第二试 (3 月 20 日上午 9:50 11:20) 一、(本题满分 20 分) 已知 , 223 2 4M a a b b 能取到的最小正整数值 . 2016 年全国初中数学联赛(决赛)试题 第 3 页 二、(本 题满分 25 分) (A) C 在以 直径的 , B 于点 D ,点 E 在 , ,C四边形 正方形, 延长线与 于点 N E . (B)5, 2 2 2 1 5 , 3 3 3 求 2 2 2 2 2 2( ) ( ) ( )a a b b b b c c c c a a 的值 . 2016 年全国初中数学联赛(决赛)试题 第 4 页 三、(本题满分 25 分) (A),足: 1xy yz ,且 2 2 2 2 2 2( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) 4x y y z z xx y y z z x . (1) 求 1 1 1xy yz 的值 . (2) 证明 : 9 ( ) ( ) ( ) 8 ( )x y y z z x x y z x y y z z x . (B)等腰 中 , 5,A B A CD 为 上异于中点的点,点 C 关于 直线对称点为点 E ,延长线与 延长线交于点 ,F 求 F 的值 . 2016 年全国初中数学联赛(决赛)试题 第 5 页 2016 年全国初中数学联合竞赛试题 及详解 第一试 (3 月 20 日上午 8:30 - 9:30) 一 、 选择题 (本题满分 42分,每小题 7分) (本题共有 6个小题,每题 均给出了代号为 A,B,C,中有且仅有一个是正确的 每小题选对得 7 分;不选、选错或选出的代号字母超过一个(不论是否写在括号内),一律得 0 分 .) x 表示不超过 x 的最大整数,把 称为 x 的小数部分 23t , a 是t 的小数部分, b 是 t 的小数部分,则 112( ) 1 3 【答案】 A . 【解析】 1 2 3 , 1 3 2 ,23t 3 4 , 即 3 4,t 3 3 1 又 2 3 , 2 3 1 ,t 4 2 3 3 , ( 4 ) 2 3 , 1 1 1 1 2 3 3 1 1 ,2 2 2 22 ( 2 3 ) 3 1 故选 A. 0 元、 15 元和 20 元,某学校计划恰好用 500 元购买上述图书 30 本 ,那么不同的购书方案有 ( ) 9 种 10种 1种 2种 【答案】 C. 【解析】设购买三种图书的数量分别为 , , ,x 301 0 1 5 2 0 5 0 0x y zx y z , 即 303 4 1 0 0 2y z xy z x ,解得 20 210依题意得, ,自然数(非负整数), 故 0 10,x x 有 11种可能的取值(分别为 0 ,1, 2 , , 9 ,1 0 )L ,对于每一个 x 值, y 和 z 都有唯一的值(自然数)相对应 . 即不同的购书方案共有 11 种,故选 C. 3(A). 如果一个正整数可以表示为两个连续奇数的立方差,则称这个正整数为“和谐数” 3 3 3 32 1 ( 1 ) , 2 6 3 1 , 2 和 26 均为“和谐数” 超过 2016 的正整数中,所有的“和谐数”之和为 ( ) 858 860 260 262 2016 年全国初中数学联赛(决赛)试题 第 6 页 【答案】 B. 【解析】 3 3 2 2( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 ) ( 2 1 )k k k k k k k k 22(12 1)k (其中 k 为非负整数),由 22 (1 2 1 ) 2 0 1 6k 得, 9k 0 , 1 , 2 , , 8 , 9k L ,即得所有不超过 2016 的“和谐数”,它们的和为 3 3 3 3 3 3 3 3 3 3 31 ( 1 ) ( 3 1 ) ( 5 3 ) ( 1 7 1 5 ) ( 1 9 1 7 ) 1 9 1 6 8 6 0 . . 3(B) 1 ( 0 )y a x b x a 的图象的顶点在第二象限,且过点 (1,0) .当 为整数时, ( ) 4 【答案】 B. 【解析】依题意知 0 , 0 , 1 0 ,2ba a 故 0,b 且 1 , ( 1 ) 2 1a b a a a , 于是 1 0,a 1 2 1 1a 又 为整数, 2 1 0,a 故 1 ,2 14故选 B. e 的半径 直于弦 交 点 C ,连接 延长交 点 E ,若 8,2,则 的面积为 ( ) 2 5 16 8 【解析】设 ,OC x 则 2,O A O D x BQ 于 ,C 1 4,2A C C B A B 在 中, 2 2 2 ,O C A C O A 即 2 2 24 ( 2 ) , 解得 3x ,即 3 (第 4 题答案图) 的中位线, 2 6 O C 直径, 90 ,B o 11 4 6 1 2 B B E 故选 A. 四边形 , 090B A C B D C , 5C, 1,对角线的交点为 M ,则 ( ) 53 2016 年全国初中数学联赛(决赛)试题 第 7 页 2(第 5 题答案图) 【答案】 D. 【解析】过点 A 作 D 于点 ,H 则 ,M 1,M 设 ,AM x 则 5, 5 x A H x 在 中, 2 2 2 5,B M A B A M x 则255A B A M x25 ,55 显然 0x ,化简整理得 22 5 5 1 0 0 解得 5,2x( 25x 不符合题意,舍去),故 5 ,2在 中, 22 12D M C M C D ,故选 D. ,足 1,x y z 则 23M x y y z x z 的最大值为 ( ) 【答案】 C. 【解析】 22( 2 3 ) ( 2 3 ) ( 1 ) 3 4 2 3 2M x y y x z x y y x x y x x y y x y 22221 1 12 2 3 3 22 2 2y x y x x x x 2 2 221 1 1 1 3 3222 2 2 2 4 4y x x x y x x 当且仅当 1 ,02时, M 取等号,故4M ,故选 C. 二、填空题(本题满分 28 分,每小题 7 分) (本题共有 4个小题,要求直接将答案写在横线上 .) 2016 年全国初中数学联赛(决赛)试题 第 8 页 1.【 1(A)、 2( B) 】 已知 的顶点 A 、 C 在反比例函数 3 0x )的图象上, 090, 030,AB x 轴,点 B 在点 A 的上方,且 6,则点 C 的坐标为 . 【答案】 3,22. 【解析】如图,过点 C 作 B 于点 D . 在 中, c o s 3 3B C A B A B C 在 中, 33s i n ,2C D B C B (第 1题答案图) 9c o s ,2B D B C B 32A D A B B D ,设 33, , ,C m A , 依题意知 0,故 33,C D n m A ,于是 3323 3 32 解得 3223 ,故点 C 的坐标为 3,22. 1(B)的最大边 的高线 中线 好把 三等分,3,则 . 【答案】 2 . 【解析】 ( 第 1 题答案图 1 ) ( 第 1 题答案图 2) 依题意得 B A D D A M M A C , 09 0 ,A D B A D C 故 A B C A C B . (1)若 A B C A C B 时,如答案图 1 所示, ,1 ,2B D D M C M 又 分 , 1 ,2A D D C M 在 中,即 1c o s ,2D A C06 0 ,D 从而 009 0 , 3 0B A C A C D . 2016 年全国初中数学联赛(决赛)试题 第 9 页 在 中, t a n 3 t a n 6 0 3 ,C D A D D A C o 在 中, 22 2A M A D D M . (2)若 A B C A C B 时,如答案图 2 所示 2. 2(A), 分 , O 为对角线的交点,,O ,D 则 . 【答案】 126o . 【解析】设 ,O C D A D O , 分 , O C D O C B , ,A D O O B C D A O O C B , (第 2 题答案图 ) O C D D A O , D,Q ,O O, A D O A O D B O C O B C , C, Q ,D ,D O D C O C D , 1 8 0B O C O D C O C D B O C O B C O C B 2 , 2 1 8 0 , 6 , 7 272D B C B C D o, ,B D C D A D 180 5 4 ,2A B D B A D o o 故 126A B C A B D D B C o. 3.【 3(A)、 4(B)】 有位学生忘记写两个三位数间的乘号,得到一个六位数,这 个六位数恰好为原来两个三位数的乘积的 3 倍,这个六位数是 . 【答案】 167334. 【解析 】 设两个三位数分别为 , 1 0 0 0 3x y , 3 1 0 0 0 ( 3 1 0 0 0 ) ,y x y x y x 故 y 是 x 的正整数倍,不妨设 y ( t 为正整数),代入得 1 0 0 0 3 ,t 1000 ,3 tx t 三位数, 1000 1003 tx t ,解得 1000,299t 正整数, t 的 可能取值为 1,2,3. 验证可知,只有 2t 符合,此时 1 6 7 , 3 3 4 故所求的六位数为 167334. 3(B)p 、 q 满足: 3 4 0 , 1 1 1 ,q p p q 则 最大值为 . 2016 年全国初中数学联赛(决赛)试题 第 10 页 【答案】 1007 . 【解析】由 3 4 0 得, 3 4, 22 24( 3 4 ) 3 4 3 ,33p q q q q q q 因 q 为质数,故 值随着质数 q 的增大而增大,当且仅当 q 取得最大值时, 得最大值 . 又 111 , 3 4 1 1 1, 3284q,因 q 为质数,故 q 的可能取值为 2 3 , 1 9 , 1 7 , 1 3 , 1 1 , 7 , 5 , 3 , 2,但 23q 时, 3 4 6 5 5 1 3 不是质数,舍去 . 当 19q 时 , 3 4 5 3 恰为质数 a x m a , ( ) 5 3 1 9 1 0 0 7q p q . 4(A) 个 1、 5 个 2、 5 个 3、 5 个 4、 5 个 5 共 25 个数填入一个 5 行 5 列的表格内(每格填入一个数),使得同一列中任何两数之差的绝对值不超过 这5 个和的最小值为 M ,则 M 的最大值为 . 【答案】 10. 【解析】 (依据 5 个 1 分布的列数的不同情形进行讨论 ,确定 M 的最大值 . (1)若 5 个 1 分布在同一列,则 5M ; (2)若 5 个 1 分布 在两列中,则由题意知这两列中出现的最大数至多为 3,故 2 5 1 5 3 2 0M ,故 10M ; (3) 若 5 个 1 分布在三列中,则由题意知这三列中出现的最大数至多为 3,故 3 5 1 5 2 5 3 3 0M ,故 10M ; (4) 若 5 个 1 分布在至少四列中,则其中某一列至少有一个数大于 3,这与已知矛盾 . 综上所述, 另一方面,如下表的例子说明 M 可以取到 的最大值为 10. 第二试 (3 月 20 日上午 9:50 11:20) 一、(本题满分 20 分) 已 知 , 223 2 4M a a b b 能取到的最小正整数值 . 【解析】解:因 ,使得 223 2 4M a a b b 的值为正整数,则有2a . 当 2a 时, b 只能为 1,此时 故 M 能取到的最小正整数值不超过 4. 当 3a 时, b 只能为 1 或 , 18;若 2b ,则 7M . 1 1 1 4 5 1 1 2 4 5 2 2 2 4 5 3 3 2 4 5 3 3 3 4 5 2016 年全国初中数学联赛(决赛)试题 第 11 页 当 4a 时, b 只能为 1 或 2 或 , 38;若 2, 24;若 3,b 则 2M . (下面考虑: 223 2 4M a a b b 的值能否为 1? ) (反证法)假设 1M ,则 223 2 4 1a a b b ,即 223 2 5a a b b , 2( 3 ) 2 5a a b b 因 b 为正整数,故 25b 为奇数,从而 a 为奇数, b 为偶数, 不妨设 2 1, 2a m b n ,其中 , 2 2 2 2 2( 3 ) ( 2 1 ) 3 ( 2 1 ) ( 2 ) 4 ( 3 3 2 ) 3a a b m m n m m m n n 即 2(3 )a a b 被 4 除所得余数为 3,而 2 5 2 ( 2 ) 1 4 1b n n 被 4 除所得余数为 1, 故式不可能成立,故 1M M 能取到的最小正整数值为 2. 二、(本题满分 25 分) (A) C 在以 直径的 , B 于点 D ,点 E 在 ,,C 四边形 正方形, 延长线与 于点 N E . (第 2(A)题答案图 ) 【证明】:连接 直径, B 于点 D 90A C B A N B A D C o ,C A B D A C A C B A D C Q ,A C B A D C ,C 2A C A D A B 由四边形 正方形及 B 于点 D 可知 : 点 M 在 , D E D M E F M F ,N A B D A M A N B A D M Q ,A N B D M ,M ,A D A B A M A N 2 ,A C A M A N ,CQ 2A E A M A N 2016 年全国初中数学联赛(决赛)试题 第 12 页 以点 F 为圆心、 半径作 ,直线 于另一点 P ,则 于点 E ,即 切线,直线 割线,故由切割线定理得 2M P,即点 N 与点 P 重合,点 N 在 , F N F E D E . (注 :上述最后一段得证明用了“同一法” ) (B)5, 2 2 2 1 5 , 3 3 3 求 2 2 2 2 2 2( ) ( ) ( )a a b b b b c c c c a a 的值 . 【解析】由 已知得 2 2 2 21 ( ) ( ) 52a b b c c a a b c a b c 由恒等式 3 3 3 2 2 23 ( ) ( )a b c a b c a b c a b c a b b c c a 得, 4 7 3 5 (1 5 5 ) , 1 又 22 ( ) ( ) ( ) 5 ( 5 ) 5 5 ( 1 )a a b b a b c a b a b b c c a c c 同理可得 2 2 2 25 ( 4 ) , 5 ( 4 )b b c c a c c a a b 原式 = 35 ( 4 ) ( 4 ) ( 4 ) 1 2 5 6 4 1 6 ( ) 4 ( )a b c a b c a b b c c a a b c 1 2 5 6 4 1 6 5 4 5 ( 1 ) 6 2 5 . 【 注 :恒等 式 32( ) ( ) ( ) ( ) ( )t a t b t c t a b c t a b b c c a t a b c 】 三、(本题满分 25 分) (A),足: 1xy yz ,且 2 2 2 2 2 2( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) 4x y y z z xx y y z z x . (3) 求 1 1 1xy yz 的值 . (4) 证明 : 9 ( ) ( ) ( ) 8 ( )x y y z z x x y z x y y z z x . 【解析】( 1)解:由等式 2 2 2 2 2 2( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) ( 1 ) 4x y y z z xx y y z z x , 去分母得 2 2 2 2 2 2( 1 ) ( 1 ) ( 1 ( ( 1 ) ( 1 ) ( 1 ) 4z x y x y z y z x x y z , 2 2 2 2 2 2 2 2 2 2 2 2( ) ( ) ( ) 3 ( ) 0 ,x y z x y z x y z x y z y z x z x y x y z x y z x y z 2016 年全国初中数学联赛(决赛)试题 第 13 页 ( ) ( ) ( ) ( ) 0x y z x y y z z x x y z x y y z z x x y z x y z , ( ) ( 1 ) 0x y z x y z x y y z z x , 1 , 1 0x y x y y z z x Q , ( ) 0 ,x y z x y z x y z , 原式 = 1.x y ( 2)证明:由( 1)得计算过程知 x y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电影夏令营活动合同
- 小学安全演讲比赛与平安校园推广计划
- 婚姻忠诚协议违约处理与争议解决机制合同
- 时尚潮流表情包IP授权及跨界营销合同
- 基于神经正切核的多核ANN-SVM分类器研究
- 纺织原料质检员劳务派遣与质量保证合同
- 宠物主题餐厅加盟店顾客满意度调查与提升合同
- 基于纳米TiO2的复合抗菌材料制备及其在包装薄膜中的应用
- 自然风化过程中电解锰渣属性演变及其驱动因素研究
- 家族企业股权传承与忠诚协议及财富隔离合同
- 地下工程监测与检测技术
- 毕业设计(论文)-汽车多向调节电动座椅设计
- 客供物料管理规范
- 信息化教学设计说课比赛模板课件
- 第九版内科学-高血压-课件
- 七年级下学期家长会课件
- 脑血管造影及介入治疗手术知情同意书
- 中国重症监护病房(ICU)建设与管理指南
- 个人不担当不作为问题清单及整改措施
- 文史哲考试总题库
- 铁道概论PPT全套完整教学课件
评论
0/150
提交评论