




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二单元第二单元 长方体和正方体总结长方体和正方体总结 一 一 长方体和正方体的特征 长方体和正方体的特征 相同点不同点 形体 面棱顶点面的形状面的大小棱长 关系 长方体 6128 一般六个面都是长 方形 也有两个相 对的面是正方形 相对的面面 积相等 平行的四 条棱长度 相等 正方体 6128 六个面都是正方形六个面的面 积相等 十二条棱 长都相等 正方体是 特殊的长 方体 长方体 有 6 个面 相对的面完全相同 长方体放桌面上 最多只能看到 3 个面 有 12 条棱 相对的棱长长度相等 而且相对的棱互相平行 12 条棱可以分为 3 组 分别为长 宽 高 每组的 4 条棱一样长 长方体的棱长总和长方体的棱长总和 长长 4 4 宽宽 4 4 高高 4 4 长 长 宽宽 高 高 4 4 有 8 个顶点 每个顶点上的三条棱分别称为长方体的长 宽 高 正方体 有 6 个完全相同的面 正方体放桌面上 最多只能看到 3 个面 有 12 条长度相等的棱 每条棱的长度称为正方体的棱长 正方体的总棱长正方体的总棱长 棱长棱长 12 12 上上 面面 下下 面面 左左 面面 后后 面面 右右 面面 前前 面面 有 8 个顶点 练一练 练一练 1 一个长方体长 宽 高分别是 10cm 7 cm 4 cm 这个长方体的棱长和 是多少厘米 提示 根据长方体的总棱长公式计算 2 一个长方体的棱长和是 160dm 其中 长是 20dm 宽是 8dm 它的高是多 少 从一个顶点引出的三条棱的长度总和是多少 3 将一根铁丝长 720 厘米做成正方体 则正方体的棱长是多少厘米 二 长方体和正方体的表面积二 长方体和正方体的表面积 定义 长方体或正方体 6 个面的总面积 叫做它的表面积 1 法一 1 长方体的表面积 有六个面 有六个面 长 宽 2 长 高 2 宽 高 2 长 宽 长 高 宽 高 2 因为长方体相对的面完全相同 法二 前 后面 长前 后面 长 高高 2 X 2 X 左 右面 长左 右面 长 高高 2 Y 2 Y 上 下面 长上 下面 长 宽宽 2 Z 2 Z 则长方体的表面积 有六个面 则长方体的表面积 有六个面 X X Y Y Z Z 2 正方体的表面积 有六个面 有六个面 棱长棱长 棱长棱长 6 6 因为正方体的六个面完 全相同 在解决一些问题时 要充分考虑实际情况 想清楚要算几个面 在解答时 可以把这几个面的面积分别算出来 再相加 也可以先算出六个面的面积总和 再减去不需要的那个 些 面 一个抽屉有 5 个面 分别是前面 后面 左面 右面 底面 所以做这样 一个抽屉所需要的木板 只要算出这 5 个面的面积就可以了 通风管顾名思义是通风用的 没有上面和底面 所以只要算四个侧面就可以 了 1 具有六个面的长方体或正方体物品 油箱 罐头盒 纸箱子等 2 具有五个面的长方体或正方体物品 水池 鱼缸等 3 具有四个面的长方体或正方体物品 水管 烟囱等 练一练 练一练 1 一个正方体纸箱 棱长 8dm 做 100 个这样的纸箱至少需要多少平方米纸板 提示 100 个需要多少平方米纸板 先算出一个需要多少 也就是求正方 体的表面积 注意单位换算 2 一只无盖的长方形鱼缸 长 0 4 米 宽 0 25 米 深 0 3 米 做这只鱼缸至 少要用玻璃多少平方米 提示 首先明白算哪几个面 画出示意图再做 3 一个游泳池 长 25 米 宽 10 米 深 2 4 米 在游泳池的四周和池底砌瓷砖 如果瓷砖的边长是 2 分米的正方形 那么至少需要这种瓷砖多少块 提示 1 算哪几个面 2 这些面是用瓷砖一块一块砌成的 4 一间教室的长是 10 米 宽是 8 米 高是 4 米 现在要粉刷教室的屋顶和四 壁 除去门窗面积 25 平方米 粉刷面积是多少 提示 1 明白粉刷哪几 个面 算出面积 2 门窗不需要粉刷 要减去 25 平方米 5 一个长方体长 8 厘米 宽 4 厘米 高 4 厘米 把它锯成 3 段 表面积至少增 加多少 提示 1 锯成 3 段 会有几个锯缝 会增加几个面 2 长方体最 小的面是多少 算出之后乘以增加的面数就是所求答案 画出示意图 三 体积与容积单位及换算三 体积与容积单位及换算 1 体积 物体所占空间的大小叫做物体的体积 1 立方米 1000 立方分米 33 11000mdm 1 立方分米 1000 立方厘米 33 11000dmcm 食指的手指尖的体积大约是 1 立方厘米 粉笔盒的体积大约是 1 立方分米 装 29 英寸电视机的大纸箱的体积大约是 1 立方米 2 容积 容器所能容纳物体的体积 叫做它们的容积 计量容积一般用体积单位 立方厘米 立方分米和立方米 但计量液体的 体积 如水 油等 常用升和毫升 即 L 和 ml 1 升 1000 毫升 11000Lml 1 毫升 1 立方厘米 3 11mlcm 3 体积单位与容积单位 1 升 1 立方分米 3 11Ldm 1 毫升 1 立方厘米 3 11mldm 练一练 练一练 1 在括号内填上合适的单位 一大瓶可乐是 2 一瓶哇哈哈矿泉水是 600 一个集装箱是 20 一块橡皮大约是 10 2 6 09 立方米 立方厘米 32 05L 立方分米 ml 立方厘米 四 长方体与正方体体积四 长方体与正方体体积 或容积或容积 的计算的计算 1 长方体的体积 长 宽 高 Vabh 正方体的体积 棱长 棱长 棱长 棱长的三次方 3 Va a aa 长方体或正方体的体积 底面积 高 VSh 容积的计算方法和体积是相同的 只是测量时体积是测量物体外面的数据 而容积是测量物体内部的数据 不计物体的厚度不计物体的厚度 体积体积 容积容积 2 不规则物体 不溶于液体 的体积计算 放入物体放入物体 1 一个水杯 底面积为 S S 水的高度为 h h 则水的体积 Sh Sh 当放入放入 石头之后 石头不溶于水且全部浸没在水中 水的高度变为变为 H H 则水杯内总体 积为 SHSH 石头不溶于水 水上升的体积等于石头的体积 水上升的体积等于石头的体积 石头的体积石头的体积 SH Sh S H h SH Sh S H h 拿出物体拿出物体 2 一个水瓶里有水和铁块 铁块全部浸没在水中 底面积为 S S 水的高度为 H H 则水瓶内总体积 SH SH 当拿出铁块水中拿出铁块水中物体之后 水的高度变为变为 h h 则水杯里水的体积为 Sh Sh 铁块不溶于水 水下降的体积等于铁块的体积 水下降的体积等于铁块的体积 铁块的体积铁块的体积 SH Sh S H h SH Sh S H h 3 3 盐溶于水 则盐溶于水 则 盐的体积盐的体积 水的体积水的体积 盐水的体积盐水的体积 练一练 练一练 1 学校把 10 5 立方米的沙子铺在长 6 米 宽 3 5 米的沙坑里 铺好之后 沙子 的厚度是多少 沙子在沙坑里形成一个长方体 求厚度也就是求长方体的高 挖一个长 50 米 宽 30 米 高 2 米的养鱼池 这个养鱼池的占地面积是多少 如果用水泵往养鱼池里注水 12 小时 池内水深 1 5 米 这个水泵每小时注水多 少立方米 提示 1 养鱼池是个长方体 占地面积也就是长方体的底面积或 长方体的上面 2 求每小时注入多少水 先算 12 个小时注入多少水 12 小时 注入的水是什么立体几何 工作效率工作效率 每小时注水的量 工作时间工作时间 12 小时 工作总量工作总量 水的体积 第二讲 长方体和正方体 一 长方体和正方体的认识 知识点 1 棱面顶点 要素 立体图形数量特征数量特征数量特征 长方体 12 互相平行 的棱长度 相等 6 相对的面完全相 同 8 特殊长方体 12 垂直于正 方形面的 棱长度相 等 6 两个面是正方形 其余四个面是完 全相同的长方形 8 正方体 12 所有的棱 长度都相 6 所有面都是正方 形且完全相同 8 同一个顶点引出的 三条棱分别叫做长 宽 高 等 一个长方体至少可以有两个面是正方形 最多可以有 6 各面是正方形 但不会 存在 3 个 4 个 5 个面是正方形 练习 1 判断并改正 1 长方体的六个面一定是长方形 2 正方体的六个面面积一定相等 3 一个长方体 非正方体 最多有四个面面积相等 4 相交于一个顶点的三条棱相等的长方体一定是正方体 7 长方体的三条棱分别叫做长 宽 高 8 有两个面是正方形的长方体一定是正方体 9 有三个面是正方形的长方体一定是正方体 11 有两个相对的面是正方形的长方体 另外四个面的面积是相等的 12 长方体和正方体最多可以看到 3 个面 14 正方体不仅相对的面的面积相等 而且所有相邻的面的面积也都相等 15 长方体 不包括正方体 除了相对的面相等 也可能有两个相邻的面相 等 16 一个长方体中最少有 4 条棱长度相等 最多有 8 条棱长度相等 2 填空 1 一个长方体最多有 个面是正方形 最多有 条棱长度相等 2 一个长方体的底面是一个正方形 则它的 4 个侧面是 形 3 正方体不仅相对的面相等 而且所有相邻的面 它的六 个面都是相等的 形 4 把长方体放在桌面上 最多可以看到 个面 最少可以 看到 个面 知识点 2 棱长和公式 长方体棱长和 长 宽 高 4 长 宽 高 棱长和 4 长方体棱长和 下面周长 2 高 4 长方体棱长和 右面周长 2 长 4 长方体棱长和 前面周长 2 宽 4 正方体棱长和 棱长 12 棱长 棱长和 12 棱长和的变形 例如 有一个礼盒需要用彩带捆扎 捆扎效果如图 打结部分需要 10 厘米彩 带 一共需要多长的彩带 分析 本题虽然并未直接提出求棱长和 但 由于彩带的捆扎是和棱相互平行的 因此 在解决问题时首先确定每部分 30 20cm 20cm 彩带与那条棱平行 从而间接去求棱 长和 前面和后面的彩带长度 高的长度 左面和右 面的彩带长度 高的长度 上面和下面的彩带长度 长的长度 需要彩带的长度 高 4 长 2 宽 2 打结部 分长度 20 4 30 2 10 150cm 练习 1 看图 2 6 并填空 单位 厘米 这个长方体长 厘米 宽 厘米 高 厘米 由一个 顶点引出的三条棱的长度和是 厘米 棱长总和是 厘 米 上下两个面是 形 2 看图 2 7 并填空单位 厘米 这是一个 体 正方体的棱长是 厘米 棱长之和是 厘米 每个面的面积是 平方厘米 3 有一个长方体的鱼缸 长 50 厘米 宽 30 厘米 高 30 厘米 需要在用铝 合金包裹玻璃连接处 需要 米的铝合金 4 把两个棱长 1 厘米的正方体拼成一个长方体 这个长方体的棱长总和 是 厘米 7 一个长方体长 12 厘米宽 8 厘米高 7 厘米 把它切成一个尽可能大的正 方体 这个正方体的棱长是 7 一个长方体的礼堂如图 过节时需要在四周装上成串的彩灯 每串彩灯长 2m 一共需要多少串彩灯 8 一只鱼缸 棱长和为 280cm 其中 底面周长为 50cm 右面周长为 40cm 前面周长为 50cm 鱼缸的长 宽 高各是多少 知识点 3 确定长方体中每个面的形状以及长 宽 高分别是多少 长方体一共有 个面 面完全相同 如 前面和 完全相同 和 完全相同 和 30m 6m 50m 完全相同 根据习惯我们一般认为在一个平面中水平方向的为长 垂直方向的为高 根据 这一习惯我们我们只需找到需要的面并根据习惯确定长和宽即可 例如 如图下列长方体的后面是 形状 长是 宽是 它的右面是 形状 长是 宽是 下面是 形状 长是 宽是 练习 1 长方体展开后每个面都是什么形状 展开后哪俩个面是相对的面 面积相等吗 上下 左右 前后各个面的长和宽分别是原长方体的什么 2 一个长方体的长是 25 厘米 宽是 20 厘米 高是 18 厘米 最大的面的长 是 厘米 宽是 厘米 它的面积是 平 方厘米 最小的面长是 厘米 宽是 厘米 它的面 积是 平方厘米 3 一个长方体的长 宽 高分别是 8 6 4 米 它的前后的面的面积是 左右的面的面积是 上下的面的面积是 知识点 4 经过折叠可以组合成正方体 经过折叠可以组合成长方体 上上 面面 下下 面面 左左 面面 后后 面面 右右 面面 前前 面面 练习 下列三个图形中 能拼成正方体的是 知识点 5 长方体或正方体的切割组合对棱长的影响 1 切割 将长方体横向切割成两个长方体后 棱长将比原来一个长方体时增加 4 条长和 4 条宽 棱长增加的最长 将长方体竖向切割成两个长方体后 棱长将比原来一个长方体时增加 4 条宽和 4 条高 棱长增加的最短 将正方体沿无论沿那个方向切割成两个长方体后 棱长将比原来增加 4 条棱 2 组合 将两个完全相同的长方体沿上下面组合后 棱长比原来两个长方体时减少 4 条 长和 4 条宽 棱长减少的最多 将两个完全相同的长方体沿前后面组合后 棱长比原来两个长方体时减少 4 条 长和 4 条高 将两个完全相同的长方体沿左右面组合后 棱长比原来两个长方体时减少 4 条 宽和 4 条高 棱长减少的最少 将两个完全相同的正方体沿上下面组合后 棱长比原来两个正方体时减少 8 条 棱 一次类推将三个完全相同的正方体沿上下面组合后 棱长比原来三个正方体时 减少 16 条棱 四个组合减少 24 条棱 五个组合减少 32 条 公式 8 N 1 例如 将五个完全相同的正方体组合成一个长方体后 棱长和为 140 厘米 原 来每个正方体的棱长和是多少 分析 五个正方体棱长共有 12 5 60 条 将五个完全相同正方体组合后棱长比原来减少 32 条 还剩 60 32 28 条 即这 28 条棱的长度和即为新长方体的棱长和 所以正方体一条棱的长度 为 140 28 5cm 所以一个正方体的棱长和为 5 12 60cm 知识点 6 小正方体拼大正方体的规律 由于正方体 每条棱的长度相等 所以要用小的正方体拼出大的正方体每 条棱上摆放的小正方的个数应该是相等的 因此要拼出最小的正方体至少需要 2 2 2 23 8 个 也就是说每条棱上放 2 个小正方体 接着再往大了拼正方 体 就是每条棱上放 3 个小正方体即 3 3 3 33 27 个 依次类推接下来是 4 4 4 43 64 个 5 5 5 53 125 个 从中我们可以发现要用小的正方体拼出大的正方体所需要的小正方体的个 数应该是一个数的立方 这就要求我们能够熟记一些数的立方 23 8 33 27 43 64 53 125 63 216 73 343 83 512 93 729 103 1000 小正方体拼大长方体的规律 规律同正方体 首先观察大长方体各棱长分别是小正方体棱长的几倍 如 长 方体长是小正方体棱长的 a 倍 宽是小正方体棱长的 b 倍 高是小正方体棱长 的 c 倍 则 大长方体就是由 a b c 个小正方体组成的 练习 1 用棱长为 3 厘米的小正方体拼棱长为 9 厘米的大正方体需要 个小正方体 A 8 个 B 27 个 C 26 个 D 64 个 2 一个长方体的长宽高分别是 18 12 9 如果用棱长为 3 的小正方拼一 个这样的长方体 一共需要 块这样的小正方体 3 一个长方体的盒子里面长 5 分米 宽 4 分米 深 3 分米 放棱长为 5 厘米 的正方体小木块共可以放 块 2 长方体和正方体的表面积 知识点 1 长方体表面积 长 宽 长 高 宽 高 2 a b a c b c 2 前面面积 上面面积 右面面积 2 正方体表面积 棱长 棱长 6 a a 6 6a2 任意一个面的面积 6 前面面积 后面面积 左面面积 右面面积 上面面积 下面面积 两个棱长和相等的长方体或一个长方体和一个正方体 表面积不一定相等 表面积相等的两个长方体或一个长方体和一个正方体 棱长和也不一定相等 练习 1 一个长方体长 6 厘米 宽 4 厘米 高 3 厘米 这个长方体上下两个面的面积 各是 平方厘米 前后两个面的面积各是 平方厘米 左右两个面 的面积各是 平方厘米 表面积是 平方厘米 2 判断题 长方体的表面积一定比正方体的表面积大 如果一个长方体能锯成四个完全一样的正方体 那么长方体前面 的面积是底面积的 4 倍 3 把一个棱长为 6 米的正方体分成两个大小 形状相同的长方体 每个长方 体的表面 积是 4 长方体的长是 6 厘米 宽是 4 厘米 高是 2 厘米 它的棱长总和是 厘米 六个面中最大的面积是 平方厘米 表面积是 平方厘米 5 用字母表示正方体 或长方体 的表面积 用字母表示长方 体的体积公式是 6 下面哪些问题跟长方体表面积有关 A 在一个长方体木箱外面刷油漆 刷油漆的面积一共有多少平方分米 B 做一个长方体的金鱼缸需要多少玻璃 C 求一个长方形足球场需多少平方米的草皮 7 一个长方体的长是 5 分米 宽和高都是 4 分米 在这个长方体中 长度为 4 分米的棱有 条 面积是 20 平方分米的面有 个 8 一个长方体的金鱼缸 长是 8 分米 宽是 5 分米 高是 6 分米 不小心前面 的玻璃被打坏了 修理时配上的玻璃的面积是 9 一个长方体侧面积是 360 平方厘米 高是 9 厘米 长是宽的 1 5 倍 求它的 表面积 知识点 2 长方体表面求法的变形 1 贴商标类型 只求四周面积 例如 一个长方体包装盒 长宽高分别为 8 4 5 需要在包装盒四周贴上商标 需要商标纸的面积是多少 2 游泳池类型 只求四周和底面 例如 一座游泳池 长宽高分别为 10m 4m 1 5m 需要在池内贴上边长为 1dm 的瓷砖 大约需要多少块瓷砖 3 抽纸盒类型 六个面面积减去缺口面积 例如 一款抽纸盒 长宽高分别是 20cm 12cm 5cm 上面有长 14cm 宽 3cm 的抽纸口 做这款抽纸盒需要多少硬纸片 4 占地面积问题 只求底面面积 例如 一个长方体蓄水池 长 12m 宽 8m 深 3m 这个水池占地面积多少平方 米 练习 1 一盒饼干长 20 厘米 宽 15 厘米 高 30 厘米 现在要在它的四周贴上商 标纸 如果商标纸的接头处是 4 厘米 这张商标纸的面积是多少平方厘米 2 一种长方体硬纸盒 长 10 厘米 宽 6 厘米 高 5 厘米 有 2 平方米的硬 纸板 210 张 可以做这样的硬纸盒多少个 不计接口 3 一个通风管的横截面是边长是 0 5 米的正方形 长 2 5 米 如果用铁皮做这 样的通风管 50 只 需要多少平方米的铁皮 4 一个房间的长 6 米 宽 3 5 米 高 3 米 门窗面积是 8 平方米 现在要把 这个房间的四壁和顶面粉刷水泥 粉刷水泥的面积是多少平方米 如果每平方 米需要水泥 4 千克 一共要水泥多少千克 5 在一节长 120 厘米 宽和高都是 10 厘米的通风管 至少需要铁皮多少平 方厘米 做 12 节这样的通风管呢 6 做一个正方体无盖纸盒 棱长是 21 厘米 至少需要多少平方厘米的纸板 7 一个抽屉 长 50 厘米 宽 30 厘米 高 10 厘米 做这样的 2 个抽屉 至 少需要木板多少平方厘米 8 长方体的长为 12 厘米 高为 8 厘米 阴影部分的两个面的面积和是 200 平方厘米 这个长方体的表面积是多少平方厘米 3 一只鱼缸 棱长和为 280cm 其中 底面周长为 50cm 右面周长为 40cm 前面周长为 50cm 这只鱼缸的占地面积是多少平方厘米 10 一块长方形铁皮长 60 厘米 宽 40 厘米 如 图 从四 个角上剪去边长是 10 厘米的正方形 然后做成盒子 这个盒子 的表面积是多少平方厘米 11 一个无盖正方体铁桶内外进行涂漆 涂漆的是 个面 知识点 3 棱长变化对表面积的影响 1 正方体 正方体的棱长扩大 2 倍 其棱长和也扩大 2 倍 表面积扩大 4 倍 体积扩大 8 倍 正方体的棱长扩大 3 倍 其棱长和也扩大 3 倍 表面积扩大 9 倍 体积扩大 27 倍 正方体的棱长扩大 n 倍 其棱长和也扩大 n 倍 表面积扩大 n2倍 体积扩大 n3 倍 2 长方体 长方体的长宽高同时扩大 2 倍 其棱长和也扩大 2 倍 表面积扩大 4 倍 体积 扩大 8 倍 长方体的长宽高同时扩大 3 倍 其棱长和也扩大 3 倍 表面积扩大 9 倍 体积 扩大 27 倍 长方体的长宽高同时扩大 n 倍 其棱长和也扩大 n 倍 表面积扩大 n2倍 体积 扩大 n3倍 长方体的长扩大 a 倍 宽扩大 b 倍 高扩大 c 倍 棱长和变化无规律 表面积 变化也无规律 体积扩大 a b c 倍 长方体的长扩大 a 倍 宽扩大 b 倍 棱长和变化无规律 表面积变化无规律 体积扩大 a b 倍 长方体的宽扩大 b 倍 高扩大 c 倍 棱长和变化无规律 表面积变化无规律 体积扩大 b c 倍 长方体的长扩大 a 倍 高扩大 c 倍 棱长和变化无规律 表面积变化无规律 体积扩大 a c 倍 练习 1 大正方体的棱长是小正方体的棱长的 2 倍 那么大正方体的表面积是小正 方体表面积的 倍 2 正方体的棱长缩小 5 倍 它的体积就缩小 倍 3 一个长方体的长 宽 高都扩大 4 倍 它的表面积就 4 正方体的棱长扩大 6 倍 表面积扩大 倍 5 一个正方体的棱长为 4 厘米扩大为 2 倍后 其棱长和为 厘米 表面积为 平方厘米比原来扩大了 6 一个长方体长扩大 2 倍 高扩大 4 倍 体积扩大 倍 7 大正方体的表面积是小正方体的 4 倍 那么大正方体的棱长是小正方体的 大正方体棱长之和是小正方体的 A 2 倍 B 4 倍 C 6 倍 D 8 倍 8 把一个正方体切成大小相等的 8 个小正方体 8 个小正方体的表面积之和 A 等于大正方体的表面积 B 等于大正方体表面积的 2 倍 C 等于大正方体表面积的 3 倍 9 判断 一个长方体的长扩大 2 倍 宽扩大 3 倍 高扩大 4 倍 这个长方体的表面积扩 大 24 倍 正方体的棱长扩大 1 2 倍 它的棱长也扩大 1 2 倍 它的表面积就扩大 14 4 倍 有棱长为 1 厘米的正方体拼成较大的正方体 其表面积比原来一个正方体时扩 大了 4 倍 棱长为 16 厘米的正方体 将棱长缩小 2 倍后 其棱长为 4 厘米 其表面积也 缩小了 4 倍 知识点 4 5 立体图形的切割 切割会使表面积增加 因此存在表面积增加最多或最少 的问题 长方体 沿与原来长方体最大面平行的方向切割 其表面积比原来增加的最多 沿与原来长方体最小面平行的方向切割 其表面积比原来增加的最少 而且每切一刀增加两个完全相同的面 切两刀增加四个完全相同的面 依次类 推 正方体 无论沿那个面平行的方向切 都将增加两个正方形的面 增加的面积均为 2a2 不存在增加最多最少的问题 例如 两盒磁带有三种不同的包装方式 你说哪一种最省包装纸 要求最省包装纸 即表面积最小 也就是表面积比原来单独包装时减少的表面 积最多 根据规律应该选择第一种包装方式 练习 1 把一个棱长为 6 米的正方体分成两个大小 形状相同的长方体 每个长方 体的表面积是 2 用两个长 4 厘米 宽 4 厘米 高 1 厘米的长方体拼成一个大长方体 这个 长方体的表面积最大是 平方厘米 最小是 平方厘米 3 把一根长 80 厘米 宽 5 厘米 高 3 厘米的长方体木料锯成长都是 40 厘米 的两段 表面积比原来增加了 平方厘米 4 用两个长 宽 高分别是 3 厘米 2 厘米 1 厘米的长方体拼成一个大长 方体 这个大长方体的表面积最小是 平方厘米 5 棱长是 a 的两个立方体拼成长方体 长方体的表面积比正方体的表面积和 减少 6 一根长方体木料 长 1 5 米 宽和厚都是 2 分米 把它锯成 4 段 表面积 最少增加 平方分米 7 一个长 5 厘米 宽 4 厘米 高 3 厘米的长方体 截成两个形状 大小完全 一样的长方体 表面积最多能增加多少平方厘米 8 把一根长 2 米的方木 底面是正方形 锯成三段 表面积增加 5 76 平方 分米 原来这根方木的底面积是多少平方分米 9 一根 1 8m 长的木材 锯成三个完全相同的正方体后 表面积比原来增加 多少平方厘米 10 一个长方体长为 1 5 分米 宽为 0 5 分米 高位 1 分米 锯三刀之后之 后可以锯成 6 个完全相同的正方体 每个正方体的表面积是多少 这时表面积 之和比原来增加多少 从一个长方体中切出一个最大的正方体问题 应该以长方体中最短的棱作为切出正方体的棱长 这样的正方体将是能切出的 最大正方体 否则切出的将不是正方体 例如 在一个长是 4 厘米 宽为 3 厘米 高为 2 厘米的长方体中切出一个最大 的正方体 该正方体的棱长和是多少 剩余部分的表面积是多少 立体图形的组合 组合只会使表面积减少 因此存在减少最多或最少的问 题 长方体 将原来长方体的最大面组合在一起 其表面积比原来减少的最多 将原来长方体的最小面组合在一起 其表面积比原来减少的最少 而且两个组合将减少两个完全相同的面 三个组合减少四个完全相同的面 依 次类推 正方体 无论沿那个面组合 都将减少两个正方形的面 减少的面积均为 2a2不存在增 加最多最少的问题 练习 1 把三个棱长是 1 厘米的正方体拼成一个长方体 这个长方体的表面积是 比原来 3 个正方体表面积之和减少了 2 把三个棱长是 2 分米的正方体拼成一个长方体 表面积是 体积 是 3 用 27 个体积是 1 立方厘米的小正方体粘合成一个大正方体 粘合后的大 正方体的表面积是 4 把三个完全相等的正方体拼成一个长方体 这个长方体的表面积是 350 平 方米 这个正方形的表面积是多少平方米 5 一个长方体的长 8 厘米 宽 6 厘米 高 5 5 厘米 将两个这样的长方体 拼成一个大长方体 表面积最大是多少 体积是多少 6 一种长方体积木 长 3 厘米 宽 2 5 厘米 高 2 厘米 将两块这样的长方 体拼成一个新的长方体 表面积最小是多少 7 用 3 个棱长 5 分米的正方体粘合成一个长方体 表面积减少多少平方分米 表面积是多少平方厘米 8 有三个大小相等的正方体 将他们拼成长方体 表面积减少 32 平方厘米 求所拼长方体的表面积 9 用两个同样的长 宽 高分别为 4 厘米 3 厘米和 2 厘米的小长方体 拼 成一个表面积最大的长方体 这个大长方体的表面积是多少平方厘米 10 用两个长 6 厘米 宽 3 厘米 高 1 厘米的长方体一起包装 至少需要包 装纸多少 11 用 3 个棱长 4 分米的正方体粘合成一个长方体 长方体的表面积比 3 个 正方体的表面积少多少平方分米 表面积是多少平方厘米 12 用两个同样的长 宽 高分别为 4 厘米 3 厘米和 2 厘米的小长方体 拼成一个表面积最大的长方体 这个大长方体的表面积是多少平方厘米 知识点 5 小正方体拼成的大正方体表面涂漆问题 大正方体长 宽 高上有几个小正方体 则将长 宽 高上的正方体数相乘就是大正方体所 含小正方体的总数 在顶点位置的小正方体露在外面的面有 3 个 在棱上 不包含顶点位置 的小正方体露在外面的面有 2 个 在面上 不包含棱上 的小正方体露在外面得面有 1 个 用总数 3 个面的 2 个面的 1 个面得 没有露在外面的小正方体的个数 例如 练习 图 1 图 2 小正方体拼成的大正方体在取走一部分后表面积的变化 知识点 6 单位换算 长度单位 mm cm dm m 相邻两个单位进率为 10 面积单位 mm2 cm2 dm2 m2 相邻两个单位进率为 100 体积单位 mm3 cm3 dm3 m3 相邻两个单位进率为 1000 容积单位 ml l 相邻两个单位进率为 1000 特别的 1ml cm3 1l 1dm3 1 方 1m 在该正方体表面涂上漆 有三个面涂上漆的小正方体有几个 有两个面图上漆的小正方体有几个 有一个面涂上漆的小正方体有几个 没有涂上漆的小正方体有几个 图一中 长方体共有 个小正方体 其中两个面露 在外面的小正方体共有 个 没有露在外面的小正 方体共有 个 图二中三个图一次有 小正方 体组成 第二个长方体中有三个面在外面得正方体有 个 两个面在外面的正方体有 个 一个面在 外面的有 个 没有露在外面的小正方体 挖去的小正方体在顶点位置顶点位置 则大正方体的表面积不变表面积不变 因为原来在顶点 位置小正方体露在外面的面为 3 个 挖去后露出来的面也是 3 个 所以表面积 不变 挖去的小正方体在棱的位置棱的位置 则大正方体的表面积增加表面积增加 因为原来在棱上 的小正方体露在外面的面有 2 个 挖去后会露出 4 个面 所以表面积会增大 挖去的小正方体在面上在面上 则大正方体的表面积也会增加表面积也会增加 因为原来在面上 的小正方体只有 1 个面露在外面 挖去后会露出 5 个面 所以表面积会增大 不是同一类型的单位 数据不能比较大小 同一类型的单位中右边的单位比左 边的单位大 大单位化小单位乘以进率 小单位化大单位除以进率 例如 手指尖约占了 1 立方厘米的空间 即它的体积约为 1 立方厘米 一个粉笔盒的体积约为 1 dm 建一游泳池 约要挖土 6000 方 1 36 dm 1360 cm 4 573m 4573 dm 一个烧杯约能装水 500ml 520ml 0 52L 5 67L 5 67 dm 5670cm 练习 1 3 2 立方分米 立方厘米 500 立方分米 立方米 9 立方米 500 立方分米 立方米 立方分米 3 6 升 毫升 立方厘米 1700 平方厘米 平方分米 平方米 3 升 毫升 2700 毫升 升 2 57 升 毫升 640 毫升 升 2 8 立方分米 立方厘米 0 8 升 毫升 720 立方分米 立方米 51000 毫升 升 32 立方厘米 立方分米 4 25 立方米 立方分米 升 2 7 立方米 升 1200 毫升 立方厘米 1 24 立方米 升 毫升 3 06 升 升 毫升 40 立方米 立方分米 4 立方分米 5 立方厘米 立方分米 30 立方分米 立方米 0 85 升 毫升 2100 毫升 立方厘米 立方分米 0 3 升 毫升 立方厘米 2 一个水池能装水 400 立方米 这是指 占地 2 公顷指的是 一块橡皮擦的体积约是 8 一本书的封面约是 2 运货集装箱的体积约是 40 一支钢笔长 18 一台录音机的体积约是 20 三 长方体和正方体的体积 高级单位高级单位 进率 高级单位的数 低级单位低级单位 低级单位的数 进率 知识点 1 容积与体积基本概念 体积是指所占空间的大小 容积是指所容纳物体的体积 一个物体的容积 一般都比它的体积小 当容器壁厚度忽略不计时体积 容积 否则体积 容积 比如说 一个洗发液的瓶子里面所能装下的洗发液的体积就是它的容积 容器壁忽略不计 体积计算方法 长方体的体积 长 宽 高 正方体的体积 棱长 棱长 棱长 长方体和正方体的体积 底面积 高 右面面积 长 前面面积 宽 体积相等的两个长方体或者一个长方体与一个正方体 表面积不一定相等 棱长和也不一定相等 体积相等的两个正方体 表面积一定相等 棱长和也一定相等 体积相等的情况下正方体的表面积比长方体的小 表面积相等的情况下正方 体的体积比长方体的体积大 练习 5 判断 体积单位比面积单位大 面积单位比长度单位大 正方体和长方体的体积都可以用底面积乘高来进行计算 表面积相等的两个长方体 它们的体积一定相等 长方体的体积就是长方体的容积 2 一个正方体的棱长和是 12 分米 它的体积是 立方分米 3 一个长方体的体积是 30 立方厘米 长是 5 厘米 高是 3 厘米 宽是 厘米 4 表面积是 54 平方厘米的正方体 它的体积是 立方厘米 5 一个长方体框架长 8 厘米 宽 6 厘米 高 4 厘米 做这个框架共要 厘米铁丝 是求长方体 在表面贴上塑料板 共 要 塑料板是求 在里面能盛 升水是 求 这个盒子有 立方米是求 6 长方体的长是 6 厘米 宽是 4 厘米 高是 2 厘米 它的棱长总和是 厘米 六个面中最大的面积是 平方厘米 表面积是 平方厘米 体积是 立方厘米 7 一个正方体棱长 2 厘米 体积是 立方厘米 如果这个正方体 的棱长扩大 2 倍 它的体积是 立方厘米 8 一个菜窖能容纳 6 立方米白菜 这个菜窖的 是 6 立方米 9 表面积相等的长方体和正方体的体积相比 正方体体积大 长方体体积大 相等 10 将一个正方体钢坯锻造成长方体 正方体和长方体 体积相等 表面积不相等 体积和表面积都不相等 表面 积相等 体积不相等 1 要制作 140 个棱长 5 厘米的正方体木块 至少需要木料多少立方分米 12 某纸盒厂生产一种正方体纸板箱 棱长 40 厘米 它的体积是多少立方厘 米 合多少立方分米 2 长方体的长为 12 厘米 高为 8 厘米 阴影部分的两个面的面积 和是 200 平方厘米 这个长方体的体积是多少立方厘米 3 一个长方体的沙坑装满沙子 这个沙坑长 3 米 宽 1 5 米 深 2 米 每立方 米沙子重 1400 千克 这个沙坑里共装沙子多少吨 4 有一块面积为 36 平方分米的铁皮 将其制作成可以容纳最多物体的形状 其棱长是多少 可以容纳多少立方分米的物体 15 用一根 12 分米长的铁丝围成一个最大的正方体框架 这个正方体的体积 是 立方分米 知识点 2 体积大小的比较 对于液体可以直接比较体积的大小 如果液体体积小于容器既可以装得下 如 果大于容器体积则装不下 对于固体而言 在体积小于容器体积的前提下 还需要比较物体的长宽高于容 器的长宽高 只有物体的长宽高都小于或等于容器的长宽高时才可以将物体装 入容器 例如 有一个长为 8 分米 高位 5 分米 体积为 240 平方分米的硬纸盒 有一 件陶瓷长为 7 4 分米 高位 4 分米 宽为 6 5 分米 是否可以放入该容器 分析 单纯计算容器和陶瓷的体积我们可以发现 陶瓷体积 硬纸盒体积 但这 并不意味着瓷器就可以装进盒子 我们还需要观察陶瓷长宽高于容器长宽高的大小 通过计算硬纸盒的长 8 分米 宽 240 8 5 6 分米 高 5 分米 陶瓷的长 7 4 分米 宽 6 5 分米 高 4 分米 我们可以发现陶瓷的宽比盒子的宽大 所以即使在体积小于盒子的前提下 仍然是装不进去的 练习 1 有一个长方形玻璃鱼缸长为 5 分米 宽为 3 分米 高为 3 分米里面装有 2 5 分米高的水 现在需要将该该鱼缸内的水倒入一个棱长为 3 5 分米的正方体鱼 缸中 请问是否可以装得下这么多水 如果装得下正方体鱼缸内的水有多高 2 有一个长方体的硬纸盒 长为 11 分米 宽为 15 分米 高为 6 分米 现将一 个长为 12 分米 宽为 10 分米 高为 5 分米长方体的礼品放入该盒子中 是否 可以装的进去 知识点 3 切割组合对体积的影响 练习 1 一个长方体 如果高增加 3 厘米 就成为一个正方体 这时表面积比原来 增加了 96 平方厘米 原来的长方体的体积是多少立方厘米 2 一个长方体 把它的高增加 3 厘米 它就变成一个正方体 并且表面积比 原来增加了
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年环保新能源产业政策环境与行业规范研究报告
- 小学青春期健康知识讲座
- 学前教育答辩策略与实践路径
- 酒店餐饮厅面节能降耗培训
- 护理质量管理标准的建立
- 2025年有机护肤品市场细分领域投资机会研究报告
- 健康游戏我常玩儿
- 小班常规教育内容及方法
- 疝气手术护理查房
- 中国硬度计行业发展监测及投资战略规划研究报告
- 2025年江苏保安员考试题库及答案
- 气道净化护理2025年护理团体标准解读
- 2024年上海城建职业学院招聘笔试真题
- 2025新人教版七年级数学课外拓展计划
- 2025年山东省中考道德与法治试卷真题(含答案)
- 职工心理安全课件
- (高清版)DB11∕T 2429-2025 补充耕地质量调查与评价技术规范
- 湖北省襄阳市2024-2025学年高一下学期7月期末统一调研测试地理试卷
- 院感知识考试试题及答案
- 民警心理减压活动方案
- 2025年贵州省6月28日纳雍事业单位教师岗考试真题及答案
评论
0/150
提交评论