


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
19.1.2(一) 平行四边形的判定一、 教学目标: 1知识与技能:理解掌握平行四边形的前三种判定方法,并会运用解题。2过程与方法:经历平行国边形斗室条件的探索,在活动中培养学生的合情推理能力。3情感目标:通过对平行四边形两个判定方法的探究和应用和,使学生感受数学 思考过程的合理性、数学证明的严谨性。二、重点、难点1 重点:平行四边形的判定方法及应用2 难点:平行四边形的判定定理与性质定理的灵活应用三、例题的意图分析 本节课安排了3个例题,例1是教材P96的例3,它是平行四边形的性质与判定的综合运用,此题最好先让学生说出证明的思路,然后老师总结并指出其最佳方法例2与例3都是补充的题目,其目的就是让学生能灵活和综合地运用平行四边形的判定方法和性质来解决问题例3是一道拼图题,教学时,可以让学生动起来,边拼图边说明道理,即可以提高学生的动手能力和学生的思维能力,又可以提高学生的学习兴趣如让学生再用四个不等边三角形拼一个如图的大三角形,让学生指出图中所有的平行四边形,并说明理由四、情境与问题设计情境1、复习提问,平行四边形的定义是什么?用它能判断一个四边形是平行四边形吗? 两组对边分别平行的四边形是平行四边形, 能情境2、复习提问,平行四边形有哪些性质? 性质1、平行四边形的对边相等性质2、平行四边形的对角相等性质3、平行四边形的角平分线互相平分问题1、你能说出他们的逆命题吗?(1)两组对边分别相等的四边形是平行四边形,(2)两组对角分别相等的四边形是平行四边形,(3)对角线互相平分的四边形是平行四边形,问题2、这些命题都成立吗?教师用PPT展示,通过动画展示,引导学生进行分析; 一直都是平行四边形;问题3、你能用全等三角形和四边形的定义来证明命题1成立吗? 老师引导学生完成证明 已知: 求证: 证明:展示做题过程通过探究过程,学生独立完成其它命题的证明过程。从探究中得到:平行四边形判定方法1 两组对边分别相等的四边形是平行四边形。平行四边形判定方法2 对角线互相平分的四边形是平行四边形。五、例习题分析例1(教材P96例3)已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平行四边形可以根据判定方法2来证明(证明过程参看教材)问;你还有其它的证明方法吗?比较一下,哪种证明方法简单例2(补充) 已知:如图,ABBA,BCCB, CAAC求证:(1) ABCB,CABA,BCAC;(2) ABC的顶点分别是BCA各边的中点证明:(1) ABBA,CBBC, 四边形ABCB是平行四边形ABCB(平行四边形的对角相等)同理CABA,BCAC(2) 由(1)证得四边形ABCB是平行四边形同理,四边形ABAC是平行四边形 ABBC, ABAC(平行四边形的对边相等) BCAC同理 BACA, ABCBABC的顶点A、B、C分别是BCA的边BC、CA、AB的中点 例3(补充)小明用手中六个全等的正三角形做拼图游戏时,拼成一个六边形你能在图中找出所有的平行四边形吗?并说说你的理由 解:有6个平行四边形,分别是ABOF,ABCO, BCDO,CDEO,DEFO,EFAO 理由是:因为正ABO正AOF,所以AB=BO,OF=FA根据 “两组对边分别相等的四边形是平行四边形”,可知四边形ABCD是平行四边形其它五个同理 六、随堂练习1如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=_ _cm,CD=_ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=_ _cm,DO=_ _cm时,四边形ABCD为平行四边形2已知:如图,ABCD中,点E、F分别在CD、AB上,DFBE,EF交BD于点O求证:EO=OF3灵活运用课本P89例题,如图:由火柴棒拼出的一列图形,第n个图形由(n+1)个等边三角形拼成,通过观察,分析发现:第4个图形中平行四边形的个数为_ _ (6个)第8个图形中平行四边形的个数为_ _ (20个)七、课后练习1(选择)下列条件中能判断四边形是平行
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年放射科影像诊断解读考试模拟题答案及解析
- 离异父母子女抚养费缴纳及监管协议
- 建设工程项目环境检测技术服务合同补充协议
- 离婚房产处置与子女抚养、教育费用全面执行协议
- 夫妻共同债务处理协议书范本及案例分析
- 慕槿川离婚协议财产分割及子女抚养责任协议
- 金融租赁债权债务三方转让与租赁资产处置协议
- 空白离婚协议书范本编写与婚姻法律风险评估合同
- 婚姻解除后子女抚养费用调整补充协议范本
- 离婚协议书定制模板:股权分配与子女监护权协议
- 视频监控调取记录表
- 第2章 Windows 10操作系统
- 教研活动:幼儿园班级主题墙创设课件
- GB/T 42430-2023血液、尿液中乙醇、甲醇、正丙醇、丙酮、异丙醇和正丁醇检验
- 酒店住宿水单模板-可修改
- SF-三福的历史与文化 v2.0
- 幼儿园故事《小红帽》PPT模板
- GB/T 6723-2017通用冷弯开口型钢
- GB/T 4456-2008包装用聚乙烯吹塑薄膜
- 葫芦丝(初学教学)-课件
- 李家小学教师绩效考核实施方案
评论
0/150
提交评论