




已阅读5页,还剩55页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第二章基本初等函数 i 2 2 2对数函数及其性质 一 复习引入 ab n logan b 1 指数与对数的互化关系 2 指数函数的图象和性质 2 指数函数的图象和性质 2 指数函数的图象和性质 2 指数函数的图象和性质 2 指数函数的图象和性质 2 指数函数的图象和性质 2 指数函数的图象和性质 y 1 2 指数函数的图象和性质 y 1 y 1 2 指数函数的图象和性质 y 1 y 1 0 1 0 1 2 指数函数的图象和性质 y 1 y 1 0 1 0 1 2 指数函数的图象和性质 y 1 y 1 0 1 0 1 2 指数函数的图象和性质 3 某种细胞分裂时 得到的细胞的个数y是分裂次数x的函数 这个函数可以用指数函数y 2x表示 3 某种细胞分裂时 得到的细胞的个数y是分裂次数x的函数 这个函数可以用指数函数y 2x表示 这种细胞经过多少次分裂 大约可以得到1万个 10万个 细胞 3 某种细胞分裂时 得到的细胞的个数y是分裂次数x的函数 这个函数可以用指数函数y 2x表示 分裂次数x就是要得到的细胞个数y的函数 这个函数写成对数的形式是x log2y 这种细胞经过多少次分裂 大约可以得到1万个 10万个 细胞 x log2y x log2y 如果用x表示自变量 y表示函数 这个函数就是y log2x x log2y 如果用x表示自变量 y表示函数 这个函数就是y log2x 1 对数函数的定义 讲授新课 1 对数函数的定义 函数y logax a 0且a 1 叫做对数函数 0 讲授新课 1 对数函数的定义 函数y logax a 0且a 1 叫做对数函数 定义域为 0 讲授新课 1 对数函数的定义 函数y logax a 0且a 1 叫做对数函数 定义域为 0 讲授新课 1 对数函数的定义 函数y logax a 0且a 1 叫做对数函数 定义域为 0 讲授新课 值域为 1 对数函数的定义 函数y logax a 0且a 1 叫做对数函数 定义域为 0 讲授新课 值域为 例1求下列函数的定义域 例1求下列函数的定义域 2 对数函数的图象 2 对数函数的图象 通过列表 描点 连线作 的图象 与 2 对数函数的图象 通过列表 描点 连线作 的图象 与 x y o 2 对数函数的图象 通过列表 描点 连线作 的图象 与 x y o 2 对数函数的图象 通过列表 描点 连线作 的图象 与 x y o 2 对数函数的图象 通过列表 描点 连线作 的图象 与 思考 两图象有什么关系 x y o 练习 的图象 并且说明这两个函数的相同点和不同点 画出函数 及 练习 的图象 并且说明这两个函数的相同点和不同点 x y o 画出函数 及 3 对数函数的性质 3 对数函数的性质 3 对数函数的性质 定义域 0 3 对数函数的性质 定义域 0 值域 r 3 对数函数的性质 定义域 0 值域 r 过点 1 0 即当x 1时 y 0 3 对数函数的性质 定义域 0 值域 r 过点 1 0 即当x 1时 y 0 3 对数函数的性质 定义域 0 值域 r 过点 1 0 即当x 1时 y 0 3 对数函数的性质 定义域 0 值域 r 过点 1 0 即当x 1时 y 0 在 0 上是增函数 3 对数函数的性质 定义域 0 值域 r 过点 1 0 即当x 1时 y 0 在 0 上是减函数 在 0 上是增函数 1 函数y x a与y logax的图象可能是 1 1 o x y 1 1 o x y 1 1 o x y 1 1 o x y 练习 1 函数y x a与y logax的图象可能是 1 1 o x y 1 1 o x y 1 1 o x y 1 1 o x y 练习 例2比较大小 例2比较大小 例2比较大小 例2比较大小 讲授新课 小结 当不能直接比较大小时 经常在两个对数中间插入中间变量1或0等 间接比较两个对数的大小 小结 1 两个同底数的对数比较大小的一般步骤 小结 1 两个同底数的对数比较大小的一般步骤 确定所要考查的对数函数 小结 1 两个同底数的对数比较大小的一般步骤 确定所要考查的对数函数 根据对数底数判断对数函数增减性 小结 1 两个同底数的对数比较大小的一般步骤 确定所要考查的对数函数 根据对数底数判断对数函数增减性 比较真数大小 然后利用对数函数的增减性判断两对数值的大小 小结 1 两个同底数的对数比较大小的一般步骤 确定所要考查的对数函数 根据对数底数判断对数函数增减性 比较真数大小 然后利用对数函数的增减性判断两对数值的大小 2 分类讨论的思想 课堂小结 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年低空物流行业报告:无人机航线设计创新与海关协同监管策略
- 六年级信息技术下册 第14课 了解空间信息技术说课稿 闽教版
- 2025年新能源汽车充电网络优化与智能调度报告
- 难点解析-人教版八年级上册物理《物态变化》同步测试练习题(含答案解析)
- Unit 2 It's a yellow cat说课稿-2023-2024学年小学英语一年级上册外研版(一起)
- 2023二年级数学上册 三 表内乘法(一)练习六说课稿 苏教版
- 资本市场数据分析创新创业项目商业计划书
- 节能产品制造创新创业项目商业计划书
- 考古挖掘玩具行业跨境出海项目商业计划书
- 第十章 第一节 科学探究:杠杆的平衡条件(说课稿)2023-2024学年八年级下册物理沪科版(安徽专版)
- 高考英语答题卡模板(全国卷版)
- 社交电商营销
- (完整版)医疗器械基础知识培训考试试题及答案
- 《主成分分析PCA》课件
- 铁塔安全培训课件
- (2024)湖北省公务员考试《行测》真题及答案解析
- 2025届高考语文复习:文言文阅读方法指导+课件
- 第47 届世界技能大赛商品展示技术项目技术文件
- 图解自然资源部《自然资源领域数据安全管理办法》
- 常用公司员工请假条模板
- 11-三角形-八大题型(拔尖)
评论
0/150
提交评论