


免费预览已结束,剩余20页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
22.1等差数列的概念及通项公式,栏目链接,情景导入,相信同学们都听说过天才数学家高斯小时候计算123100的故事,不过,这很可能是一个不真实的传说,据对高斯素有研究的数学史家E.T.贝尔(E.T.Bell)考证,高斯的老师布特纳当时给孩子们出的是一道更难的加法题:812978149581693100899.当布特纳刚写完这道题时,高斯也算完了,并把答案写在了小石板上你知道高斯是如何计算的吗?,栏目链接,课标点击,栏目链接,1理解等差数列的概念,掌握等差数列的通项公式,并能运用公式解决一些简单的问题2掌握等差数列的常用性质,并能灵活地运用这些性质,使解题过程简捷准确,栏目链接,要点导航,知识点1等差数列,栏目链接,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差应当注意的是:(1)在定义中,之所以说“从第2项起”,首先是因为首项没有“前一项”,其次是如果一个数列,不是从第2项起,而是从第3项起,每一项与它的前一项的差是同一个常数(an1and,nN*,且n2),那么这个数列不是等差数列,但可以说这个数列从第2项起(即去掉第1项后)是一个等差数列例如,数列1,4,5,6,7,8,9,10就不是等差数列,而去掉第1项后,剩下的数组成的数列就是等差数列,栏目链接,(2)如果一个数列,从第2项起,每一项与它的前一项的差都是常数,那么这个数列不一定是等差数列,因为这个常数可能不唯一(3)一个等差数列的公差d是这个数列的后一项与前一项的差因为等差数列具有dan1ananan1a2a1的特点,所以求公差可以用an1an,也可以用anan1,还可以用a2a1等公差d可以是任何实数,当d0时,数列是常数列;当d0时,数列为递增数列;当d0时,数列为递减数列(4)等差数列的定义还可表述为:在数列an中,若an1and(nN*),d为常数,则an是等差数列,常数d为公差,知识点2等差数列的判定方法,栏目链接,(1)an1and(常数)an是等差数列(2)2an1anan2(nN*)an是等差数列(3)anknb(k,b为常数)an是等差数列,知识点3等差数列的常用性质,栏目链接,栏目链接,(6)an是有穷等差数列,则与首末两项等距离的两项之和都相等,且等于首末两项之和,即a1ana2an1aiani1.(7)下标成等差数列且公差为m的项ak,akm,ak2m,(k,mN*)组成公差为md的等差数列(8)若bn为等差数列,则anbn,kanbn(k,b为非零常数)也是等差数列,知识点4解答等差数列有关问题时应注意的问题,栏目链接,(1)首项与公差,是解决等差数列问题的关键(2)等差数列的通项公式涉及4个量a1,an,n,d,知道任意三个就可以列方程求另外一个(3)熟练掌握并灵活运用定义、通项公式是解决等差数列问题的基础(4)寻求条件与结论的共用式以便进行整体代换,使运算更为迅速和准确(5)学会运用函数的思想和方法解题,栏目链接,典例解析,题型1等差数列定义及其应用,栏目链接,例1在等差数列中,amn,anm(mn),则amn为()AmnB0Cm2Dn2分析:a1,d是等差数列的基本元素,可先求出基本元素,再用它们去构成其他元素进行解答,或利用数列是特殊的函数这一点进行求解,或利用选择题的特点进行求解,栏目链接,栏目链接,栏目链接,题型2利用“对称值”解题,栏目链接,例2等差数列an中,已知a2a3a10a1136,求a5a8.分析:利用等差数列的性质求解,或整体考虑问题,求出2a111d的值解析:方法一根据题意,有(a1d)(a12d)(a19d)(a110d)36,4a122d36,故2a111d18.而a5a8(a14d)(a17d)2a111d,因此,a5a818.方法二根据等差数列性质,可得a5a8a3a10a2a1136218.,栏目链接,名师点评:方法一设出了a1,d但并没有求出a1,d,事实上也求不出来,这种“设而不求”的方法在数学中常用,它体现了整体的思想;方法二实际上运用了等差数列的性质:若pqmn,p,q,m,nN*,则apaqaman.,栏目链接,变式迁移2在等差数列an中,a4a816,则a2a10(B)A12B16C20D24解析:48210,根据等差数列性质,则a2a10a4a816.,题型3如何判断数列为等差数列,栏目链接,例3已知a,b,c成等差数列,那么a2(bc),b2(ca),c2(ab)是否成等差数列?分析:在ac2b条件下,是否有以下结果:a2(bc)c2(ab)2b2(ac)?解析:a,b,c成等差数列,ac2b.a2(bc)c2(ab)2b2(ca)a2ba2cc2ac2b2b2c2b2aa2cc2aab(a2b)bc(c2b)a2cc2a2abcac(ac2b)0,,栏目链接,a2(bc)c2(ab)2b2(ca)a2(bc),b2(ca),c2(ab)成等差数列名师点评:如果a,b,c成等差数列,常转化成ac2b的形式去运用;反之,如果求证a,b,c成等差数列,常改证ac2b.有时应用概念解题,需要运用一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 悲催的狮子经理650字10篇范文
- 项目可行性研究分析模板
- 六年级写人作文我的好朋友500字12篇范文
- 企业年度财务预算编制及执行报告
- 特别的除夕夜作文400字8篇
- 企业培训需求调研报告数据驱动版
- 时代的选择课件
- 纪检四大监督课件
- 统编版语文二年级上册第一单元测试卷含答案
- 《新编商务应用文写作》第四章 习题参考答案
- lpr利率管理办法
- 印刷装订车间管理办法
- 第三章 金融远期
- 阿尔茨海默症诊断标准
- 课堂有效教学课件
- 规范诊疗培训课件
- 人教版七年级英语下册期末复习专练:短文填空(含答案解析)
- 2025年保安证考试题目及答案
- 2025年辅警面试考试试题库目(答案+解析)
- 湖南省长沙市岳麓实验中学2024-2025学年高一下学期6月月考数学试卷
- 初中教师师德培训课件
评论
0/150
提交评论