




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新干二中高二(3、4)第一次数学试卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选择中,只有一个是符合题目要求的)1. 一个直角三角形绕斜边旋转360形成的空间几何体为( )A一个圆锥 B一个圆锥和一个圆柱C两个圆锥 D一个圆锥和一个圆台 2. 一个几何体的三视图如图1所示,则该几何体可以是()图 1 A棱柱 B棱台 C圆柱 D圆台 3. 已知平面内有无数条直线都与平面平行,那么() A B与相交 C与重合 D或与相交 4. 如图2所示的几何体,关于其结构特征,下列说法不正确的是( ) A该几何体是由两个同底的四棱锥组成的几何体 B该几何体有12条棱、6个顶点图 2 C该几何体有8个面,并且各面均为三角形D该几何体有9个面,其中一个面是四边形,其余均为三角形 5. 如图3所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为() A B 图 3 C D1 6. 已知一个铜质的五棱柱的底面积为16cm2,高为4cm,现将它熔化后铸成一个正方体的铜块(不计损耗),那么铸成的铜块的棱长是() A2cm Bcm C4cm D8cm 7. 空间中四点可确定的平面有()A1个 B3个 C4个 D1个或4个或无数个 8. 下列命题错误的是( ). A.如果平面平面,那么平面内所有直线都垂直于平面 B.如果平面平面,那么平面内一定存在直线平行于平面 C.如果平面平面,平面平面,那么平面 D.如果平面不垂直于平面,那么平面内一定不存在直线垂直于平面图 4 9. 如图4,一个水平放置的平面图的直观图(斜二测画法)是一个底角为45、腰和上底长均为1的等腰梯形,则这个平面图形的面积是( ) A2+B1+C1+D 10. 如图5,在长方体中,由在表面到达的最短行程为( )图 5 A12 B C DABCD图 6 11.如图6,四面体A-BCD中,AB=AD=CD=1,BD=,BDCD,平面ABD平面BCD,若四面体A-BCD的四个顶点在同一个球面上,则该球的体积为( )A B C D 12.已知三棱锥SABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,AB与面SBC所成角的正弦值为( ) A B C D 二、填空题(本大题共4小题,每小题5分,共206分.把答案填在题中的横线上)13. 一棱柱有10个顶点,且所有侧棱长之和为100,则其侧棱长为 14. 利用斜二测画法得到的 三角形的直观图是三角形; 平行四边形的直观图是平行四边形; 正方形的直观图是正方形; 菱形的直观图是菱形. 以上结论,正确的是 . 15. 四面体S-ABC中,各个侧面都是边长为的正三角形,E,F分别是SC和AB的中点,则异面直线EF与SA所成的角等于 . 16. 设m,n是不同的直线,是不同的平面,有以下四个命题: (1); (2) (3); (4), 其中假命题有 三、解答题(本大题共6小题,共70分.解答题应写出文字说明、证明过程或演算步骤) 17(本小题满分10分)如图7所示,设计一个四棱锥形冷水塔塔顶,四棱锥的底面是正方形,侧面是全等的等腰三角形,已知底面边长为2m,棱锥高为m,制造这个塔顶需要多少铁板? 图 7 18.(本小题满分12分)如图8,是一个几何体的三视图,正视图和侧视图都是由一个边长为2的等边三角形和一个长为2宽为1的矩形组成 (1)说明该几何体是由哪些简单的几何体组成; (2)求该几何体的表面积与体积 图 8 19.(本小题满分12分)如图9,等腰直角三角形ABC中,A90,BC,DAAC,DAAB,若DA1,且E为DA的中点求异面直线BE与CD所成角的余弦值 图 9PEDCBA20. (12分)在四棱锥P-ABCD中,PBC为正三角形,AB平面PBC,ABCD,AB=DC,.(1)求证:AE平面PBC; (2)求证:AE平面PDC.21. (本小题满分12分)如图10,在三棱锥ABPC中,APPC,ACBC,M为AB中点,D为PB中点,且PMB为正三角形, 求证:MD平面APC; 求证:平面ABC平面APC 图 1022. (本小题满分12分)如图11,四边形ABCD中,ABAD,ADBC,AD=6,BC=4,AB=2,E,F分别在BC,AD上,EFAB现将四边形ABEF沿EF折起,使得平面ABEF平面EFDC 当BE=1,是否在折叠后的AD上存在一点P,使得CP平面ABEF?若存在,求出P点位置,若不存在,说明理由; 设BE=x,问当x为何值时,三棱锥ACDF的体积有最大值?并求出这个最大值图 11高二数学(3、4班)参考答案一、1. C 2. D 3. D 4 . D 5.A 6.C 7. D 8. A 9. A 10. B 11. C 12. D二、13.20 14. 15. 45 16. (2)(4)三、解答题 17. 解:如图18所示,连接AC和BD交于O,连接SO.作SPAB,连接OP. 在RtSOP中,SOm,OPBC1m, 所以SP2m, 则SAB的面积是222m2 所以四棱锥的侧面积是428m2, 即制造这个塔顶需要8m2铁板 18.解:(1)由三视图知,该三视图对应的几何体为一个底面直径为2,母线长为2的圆锥与一个长宽都为2高为1的长方体组成的组合体. (2)此几何体的表面积, 此几何体的体积. 19.解:取AC的中点F,连接BF、EF,在ACD中,E、F分别是AD,AC的中点,EFCD,所以BEF即为所求的异面直线BE与CD所成的角(或其补角)在RtEAB中,AB1,AEAD,所以BE.图 19在RtAEF中,AFAC,AE,所以EF.在RtABF中,AB1,AF,所以BF.在等腰EBF中,cosFEB,所以异面直线BE与CD所成角的余弦值为.20. 解:(1)证明:取PC的中点M,连接EM,则EMCD,EM=DC,所以有EMAB且EM=AB,则四边形ABME是平行四边形.所以AEBM,因为AE不在平面PBC内,所以AE平面PBC.(2) 因为AB平面PBC,ABCD,所以CD平面PBC,CDBM.由(1)得,BMPC,所以BM平面PDC,又AEBM,所以AE平面PDC.21. 证明:因为M为AB中点,D为PB中点, 所以MDAP, 又MD平面APC,所以MD平面APC因为PMB为正三角形,且D为PB中点,所以MDPB 又由知MDAP,所以APPB已知APPC,PBPC=P, 所以AP平面PBC,而BCPBC, 所以APBC, 又ACBC,而APAC=A, 所以BC平面APC, 又BC平面ABC图 21,所以平面ABC平面PAC 22. 解:若存在P,使得CP平面ABEF,此时=: 证明:当=,此时=, 过P作MPFD,与AF交M,则=, 又FD=5,故MP=3, 因为EC=3,MPFDEC, 所以MPEC,且MP=EC,故四边形MPCE为平行四边形, 所以PCME, 因为CP平面ABEF,ME平面ABEF, 故
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- GB/T 45617-2025国际贸易业务流程规范动物溯源数据交换
- GB/T 21307-2025皮辊轧花机
- GB/T 45550-2025蜜蜂遗传资源调查技术规范
- 发生火灾时停电应急预案(3篇)
- 行政管理风险评估试题及答案
- 2025年智能化应用试题及答案
- 时空组学 数据集格式规范 编制说明
- 高考数学2024年解题思路探讨与试题及答案
- 高考数学强化课程试题及答案
- 企业火灾场景应急预案(3篇)
- 2025年人机交互领域考试题及答案
- 2025年黄山旅游发展股份有限公司春季招聘75人笔试参考题库附带答案详解
- 山西晟诚环美固体废物处置有限公司 粉煤灰、煤矸石综合利用整沟治理项目报告书
- 《酒店业运营管理》课件
- 2025年全国保密教育线上培训考试试题库及参考答案(典型题)带答案详解
- 项目管理咨询合同协议
- 辽宁省名校联盟2025年高三5月份联合考试化学及答案
- 2024年河北省邯郸县事业单位公开招聘村务工作者笔试题带答案
- 喝酒受伤赔偿协议书模板
- 2025年广东广州市高三二模高考英语试卷试题(含答案详解)
- 2025年中国公务车行业市场深度评估及投资策略咨询报告
评论
0/150
提交评论