




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
宜昌市部分示范高中教学协作体2020年秋期中联考高二数学(全卷满分:150分 考试用时:150分钟)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1、已知两点,则直线AB的斜率为A. 2B. C. D. 2、数列3,5,9,17,33,的一个通项公式可以为( )A. B. C.D. 3、在等比数列中,则的值为 ( )A. 18B. 21C. 24D. 484、过点且倾斜角为的直线方程为()A. B. C. D. 5、已知数列的前n项和,则( )A. 6B. 8C. 12D. 206、已知圆过三点,则圆的方程是()A. B. C. D. 7、在等差数列中,若是方程的两根,则的前12项的和为()A. 6B. 18C. -18D. -68、不论m为何实数,直线恒过定点( )A. B. C. D. 9、已知数列满足,则 ( )A. 13 B. 8 C. 5 D. 2010、已知数列满足,则=( )A.2nB. C. D.11、已知,动点P在直线上,当取最小值时,则点P的坐标为()A. B. C. D. 12、直线与圆有公共点,则的最大值为( )A. B. C. D. 2二、填空题:本大题共4小题,每小题5分,共20分.13、已知直线,则直线的倾斜角为_14、已知点,若A、B、C三点共线,则x的值为_15、已知1,a,b,c,4成等比数列,则b=_16、已知圆,以点为中点的弦所在的直线方程是_三、解答题:解答题应写出文字说明,证明过程或演算步骤.17、(本小题满分10分)已知直线过点若直线与平行,求直线的方程;若直线在两坐标轴上的截距相等,求直线的方程18、 (本小题满分12分)在等差数列中,(1)求数列的通项公式;(2)设,求数列的前n项和19、 (本小题满分12分)已知递增等比数列满足:求的通项公式及前n项和;设,求数列的前n项和20、 (本小题满分12分)已知曲线方程. 若曲线C表示圆,求m的取值范围; 当m=4时,求圆心和半径;当m=4时,若圆C与直线相交于M、N两点,求线段 MN的长21、 (本小题满分12分)已知数列的前n项和为,且满足.(1)求数列的前三项;(2)证明数列为等比数列;(3)求数列的前n项和22、(本小题满分12分)在平面直角坐标系xoy中,直线与圆C相切,圆心C的坐标为(1) 求圆C的方程;(2) (2)设直线与圆C没有公共点,求k的取值范围;(3) (3)设直线与圆C交于M、N两点,且OMON,求m的值(4)(5)(6) 宜昌市部分示范高中教学协作体2020年秋期中联考高二数学参考答案一、选择题(本大题共12小题,共60.0分)题号123456789101112答案CBDABDCBABAC二、填空题(本大题共4小题,共20.0分)13、 14、-1 15、 2 16、2x-4y+3=0三、解答题(本大题共6小题,共70.0分)17、解:(1)设直线方程为,因为过点,所以,从而直线方程为,即为所求; (2)当直线经过原点时,可得直线方程为:,即 当直线不经过原点时,可设直线方程为,把点代入可得:,可得直线方程为综上所述:所求的直线方程为:或 18、解:(1)设等差数列an的公差为d,由题意得,解得, an=3+(n-1)1,即an=n+2 (2) 所以 19、解:(1)由题可知 所以的通项公式 前n项和; (2)由(1)知所以 所以数列的前n项和.故数列的前n项和. 20、解:由得(1)若曲线C表示圆,则,所以. (2)当m=4,则圆为此时,该圆的圆心为,半径为1; (3)当m=4,则圆的方程为,圆心到直线的距离因为圆的半径为1,所以故线段MN的长为. 21、解:(1)由题意得,所以数列的前三项; (2)因为,所以 当时, -,得 是以-2为首项,-2为公比的等比数列 (3)设,则所以, , 两式相减得,即为所求 22、解:()设圆的方程是(x-1)2+(y+2)2=r2,依题意C(1,-2)为圆心的圆与直线相切所求圆的半径,所求的圆方程是(x-1)2+(y+2)2=9 ()圆心C(1,-2)到直线y=kx+1的距离, y=kx+1与圆没有公共点, dr即,解得0k k的取值范围:(0,) ()设M(x1,y1),N(x2,y2),联立方程组,消去y,得到方程2x2+2(m+1)x+m2+4m-4=0, x1+x2=-m-1,x1x2= , 由已知可得,判别式=4(m+1)2-42(m2+4m-4)0,化简得m2+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年广咨国际环聚英才、绿动未来招聘考前自测高频考点模拟试题及答案详解(典优)
- 2025年马鞍山和县安徽和州城市建设集团有限公司二季度招聘5人模拟试卷及一套答案详解
- 2025年上半年齐齐哈尔医学院附属第二医院公开招聘编制内工作人员20人模拟试卷附答案详解(模拟题)
- 2025年宝鸡石油机械有限责任公司春季招聘(10人)考前自测高频考点模拟试题及1套完整答案详解
- 2025江西景德镇陶瓷大学科研助理岗位招聘11人模拟试卷及答案详解(全优)
- 2025湖南湘西凤凰县直机关事业单位公开选调工作人员40人考前自测高频考点模拟试题及答案详解(历年真题)
- 2025金华兰溪市尚轩殡仪服务有限公司招聘5人考前自测高频考点模拟试题完整答案详解
- 2025内蒙古巴彦淖尔市临河区第三人民医院招聘部分人员3人模拟试卷及完整答案详解1套
- 2025贵州省卫生健康委员会“银龄计划”(引进退休高级医疗卫生人才)模拟试卷及1套完整答案详解
- 2025内蒙古锡林浩特市内蒙古北方人才集团招聘10人模拟试卷及一套参考答案详解
- 公路工程技术创新管理制度
- 2023年“达人英才计划”引才考试真题
- 河北省承德市隆化县第二中学2023-2024学年九年级上学期期中考试物理试题(无答案)
- 蜗牛与黄鹂鸟(课件)人音版音乐二年级上册
- 3.1水循环课件高一地理人教版(2019)必修一+
- DB11∕1450-2017 管道燃气用户安全巡检技术规程
- JTG G10-2016 公路工程施工监理规范
- 《电力生产统计技术导则 第2部分供用电统计》
- 模板施工智能化技术应用
- 检验科运用PDCA循环降低检验标本的丢失率和不合格率
- 化学(基础模块)中职PPT完整全套教学课件
评论
0/150
提交评论