




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省荆州市沙市第五中学高中数学 1.1.3导数的几何意义导学案(无答案)新人教版选修2导学案学习目标:1.了解平均变化率与割线斜率之间的关系;2.理解曲线的切线的概念;3.通过函数的图像直观地理解导数的几何意义,并会用导数的几何意义解题.学习重点:曲线的切线的概念、切线的斜率、导数的几何意义.学习难点:导数的几何意义.学法指导:知识链接(一)平均变化率、割线的斜率(二)瞬时速度、导数我们知道,导数表示函数在处的瞬时变化率,反映了函数在附近的变化情况,导数的几何意义是什么呢?自主学习(一)曲线的切线及切线的斜率如图3.1-2,当沿着曲线趋近于点时,割线的变化趋势是什么?图3.1-2我们发现,当点沿着曲线无限接近点即时,割线趋近于确定的位置,这个确定位置的直线称为曲线在点处的切线.问题: (1)割线的斜率与切线的斜率有什么关系?(2)切线的斜率为多少?容易知道,割线的斜率是,当点沿着曲线无限接近点时,无限趋近于切线的斜率,即说明: (1)设切线的倾斜角为,那么当时,割线的斜率,称为曲线在点处的切线的斜率.这个概念: 提供了求曲线上某点切线的斜率的一种方法;切线斜率的本质函数在处的导数.(2)曲线在某点处的切线:1)与该点的位置有关;2)要根据割线是否有极限位置来判断与求解.如有极限,则在此点有切线,且切线是唯一的;如不存在,则在此点处无切线;3)曲线切线,并不一定与曲线只有一个交点,可以有多个,甚至可以无穷多.(二)导数的几何意义函数在处的导数等于在该点处的切线的斜率,即说明: 求曲线在某点处的切线方程的基本步骤:求出点的坐标;求出函数在点处的变化率得到曲线在点的切线的斜率;利用点斜式求切线方程.(三)导函数由函数在处求导数的过程可以看到,当时,是一个确定的数,那么,当变化时,便是的一个函数,我们叫它为的导函数.记作:或,即.注: 在不致发生混淆时,导函数也简称导数.(四)函数在点处的导数、导函数、导数之间的区别与联系(1)函数在一点处的导数,就是在该点的函数的改变量与自变量的改变量之比的极限,它是一个常数,不是变数.(2)函数的导数,是指某一区间内任意点而言的,就是函数的导函数.(3)函数在点处的导数就是导函数在处的函数值,这也是求函数在点处的导数的方法之一.合作探究例1 (1)求曲线在点处的切线方程.(2)求函数在点处的导数.解: (1)所以,所求切线的斜率为因此,所求的切线方程为即(2)因为所以,所求切线的斜率为,因此,所求的切线方程为即例2 如图3.1-3,它表示跳水运动中高度随时间变化的函数,根据图像,请描述、比较曲线在、附近的变化情况.解: 我们用曲线在、处的切线,刻画曲线在上述三个时刻附近的变化情况.(1) 当时,曲线在处的切线平行于轴,所以,在附近曲线比较平坦,几乎没有升降.(2)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减.(3)当时,曲线在处的切线的斜率,所以,在附近曲线下降,即函数在附近单调递减从图3.1-3可以看出,直线的倾斜程度小于直线的倾斜程度,这说明曲线在附近比在附近下降的缓慢.例3 如图3.1-4,它表示人体血管中药物浓度(单位:)随时间(单位:)变化的图象.根据图像,估计时,血管中药物浓度的瞬时变化率(精确到).解: 血管中某一时刻药物浓度的瞬时变化率,就是药物浓度在此时刻的导数,从图像上看,它表示曲线在此点处的切线的斜率.如图3.1-4,画出曲线上某点处的切线,利用网格估计这条切线的斜率,可以得到此时刻药物浓度瞬时变化率的近似值.作
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年学历类自考专业(法律)-金融法参考题库含答案解析
- VPN在远程监控系统的安全接入与管理考核试卷
- 动作捕捉数据在动漫角色情感表达中的应用研究考核试卷
- 车载终端安全防护策略考核试卷
- 2025年学历类成考专升本医学综合-英语参考题库含答案解析
- 2025年乡村振兴项目自然人借款协议书
- 2025年度高端遗体告别仪式创意策划合同范本
- 2025顶管施工劳务分包合同范本:合同履行过程中的保险保障
- 2025年绿茶品牌代理销售合作协议书
- 二零二五年度住宅小区外墙保温与粉刷工程承包合同
- 《企业的可持续发展》课件
- 咨询服务承揽合同范本
- 施工期间交通导行方案
- 《森林疗养基地建设技术导则》(T-CSF 001-2019)
- 《酒店客户关系管理 》课件-项目三 酒店客户关系管理制度
- 2024年中考英语试题分类汇编
- 2025版高考化学一轮复习第九章有机化合物1甲烷乙烯苯煤石油天然气的综合利用强化训练1含解析新人教版
- 《肿瘤溶解综合征》课件
- 电瓶车以租代购协议书范文范本
- 人教版(2024新版)七年级上册数学第四章 整式的加减 单元测试卷(含答案)
- 小数乘除法竖式计算专项练习题大全(每日一练共23份)
评论
0/150
提交评论