江苏省徐州市邳州市第四中学高中数学 第八章向量的线性运算导学案 苏教版必修2_第1页
江苏省徐州市邳州市第四中学高中数学 第八章向量的线性运算导学案 苏教版必修2_第2页
江苏省徐州市邳州市第四中学高中数学 第八章向量的线性运算导学案 苏教版必修2_第3页
江苏省徐州市邳州市第四中学高中数学 第八章向量的线性运算导学案 苏教版必修2_第4页
江苏省徐州市邳州市第四中学高中数学 第八章向量的线性运算导学案 苏教版必修2_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省徐州市邳州市第四中学高中数学 第八章向量的线性运算导学案 苏教版必修2高一 年级 数学 学科课 题向量的线性运算(四) 课 型新课考纲要求1.理解两个向量共线的含义,并能运用它们证明简单的几何问题。2.理解两个向量共线(平行)的充要条件,能表示与某个非零向量共线的向量,能判断两个向量共线;3.通过练习使学生对两个向量共线的充要条件,平面向量的基本定理有更深刻的理解,初步学会用向量的方法解决一些简单的几何问题和实际应用问题教学重点理解两个向量共线(平行)的充要条件,能表示与某个非零向量共线的向量,能判断两个向量共线;教学难点对两个向量共线(平行)的充要条件的理解.预 习 指 导一、创设情景,揭示课题 向量数乘的含义及向量数乘的运算律; 二、研探新知【探索】:(师生共同分析向量共线的充要条件)对于向量()、, 如果有一个实数,使得,那么与共线吗? 如果与共线,是否存在一个实数,使?定理:向量 ()与共线,当且仅当有唯一一个实数,使=【思考】:为什么要求是非零的?(若=,则,总共线,而时,则不存在实数,使=成立;而=时,不管取什么值,=总成立,不唯一)导 学 过 程一、回顾与反馈BDACE例1(教材例3)如图2-2-10,分别为的边和中点,求证:与共线,并将用线性表示。例2 判断下列各题中的向量是否共线:(1),;(2),且,共线例3 (教材例4)如图2-2-11,中,为直线上一点, 求证:【思考】:上例所证的结论表明:起点为,终点为直线上一点的向量可以用表示,那么两个不共线的向量可以表示平面内任一向量吗?三、探究小结:(1)向量与非零向量共线的条件是:有且只有一个非零实数,使=.(2)理解两向量共线(平行)的充要条件,并会判断两个向量是否共线。(3)平面向量基本定理的理解及注意的问题.巩 固 训 练1与向量平行

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论