江苏省南京市、盐城市2020届高三数学下学期第二次模拟考试试题(含解析)_第1页
江苏省南京市、盐城市2020届高三数学下学期第二次模拟考试试题(含解析)_第2页
江苏省南京市、盐城市2020届高三数学下学期第二次模拟考试试题(含解析)_第3页
江苏省南京市、盐城市2020届高三数学下学期第二次模拟考试试题(含解析)_第4页
江苏省南京市、盐城市2020届高三数学下学期第二次模拟考试试题(含解析)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

南京市、盐城市2020届高三年级第二次模拟考试数学一、选择题:本大题共14个小题,每小题5分,共70分.不需写出解答过程,请把答案写在答题纸的指定位置上.1.已知集合,则=_.【答案】【解析】【分析】直接利用并集的定义求解.【详解】由题得=故答案为:【点睛】本题主要考查并集的运算,意在考查学生对该知识的理解能力掌握水平.2.若复数满足(为虚数单位),且实部和虚部相等,则实数的值为_.【答案】【解析】【分析】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,即可求出a的值.【详解】由题得z=(a+2i)i=-2+ai,因为复数的实部与虚部相等,所以a=-2.故答案为:-2【点睛】本题主要考查复数的计算,考查复数实部与虚部的概念,意在考查学生对这些知识的理解能力掌握水平.3.某药厂选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:kPa)的分组区间为12,13),13,14),14,15),15,16),16,17),将其按从左到右的顺序分别编号为第一组,第二组,第五组,如图是根据实验数据制成的频率分布直方图,已知第一组与第二组共有20人,则第三组中的人数为 _【答案】【解析】【分析】由频率以及直方图可得分布在区间第一组与第二组共有20人的频率,即可求出总的人数,求出第三组的人数.【详解】由直方图可得分布在区间第一组与第二组共有20人,分布在区间第一组与第二组的频率分别为0.24,0.16,设总的人数为n,则所以第3小组的人数为人.故答案为:18【点睛】本题主要考查频率分布直方图中频数、频率等的计算,意在考查学生对这些知识的理解能力掌握水平.4.下图是某算法的伪代码,输出的结果的值为_.【答案】【解析】【分析】直接按照算法的伪代码运行即得结果.【详解】16,i=3,S=4,36,i=5,S=9,56,i=7,S=16,76,输出S=16.故答案为:16【点睛】本题主要考查算法,意在考查学生对该知识的理解能力和掌握水平.5.现有件相同的产品,其中件合格,件不合格,从中随机抽检件,则一件合格,另一件不合格的概率为_.【答案】【解析】【分析】分别求出基本事件的总数和要求事件包含的基本事件的个数,根据古典概型的概率计算公式即可得出【详解】从5件产品中任意抽取2有种抽法,其中一件合格、另一件不合格的抽法有种根据古典概型的概率计算公式可得一件合格,另一件不合格的概率故答案为:【点睛】熟练掌握古典概型的概率计算公式和排列与组合的计算公式是解题的关键6.等差数列中,前项的和,则的值为_.【答案】【解析】【分析】首先根据已知求出,再利用等差数列的通项求出的值.【详解】由题得.故答案为:-4【点睛】本题主要考查等差数列的通项、前n项和的计算,意在考查学生对这些知识的理解能力掌握水平和计算能力.7.在平面直角坐标系中,已知点是抛物线与双曲线的一个交点.若抛物线的焦点为,且,则双曲线的渐近线方程为_.【答案】【解析】【分析】设点A(x,y),根据的坐标,再把点A的坐标代入双曲线的方程求出,再求双曲线的渐近线方程.【详解】设点A(x,y),因为x-(-1)=5,所以x=4.所以点A(4,4),由题得所以双曲线的渐近线方程为.故答案为:【点睛】本题主要考查抛物线和双曲线的简单几何性质,意在考查学生对这些知识的理解能力掌握水平.8.若函数的图象经过点,且相邻两条对称轴间的距离为,则的值为_.【答案】【解析】【分析】先根据相邻两条对称轴间的距离为求出的值,再根据图象经过点求出,再求的值.【详解】因为相邻两条对称轴间的距离为,所以所以.因为函数的图象经过点所以.所以 ,所以.故答案为:【点睛】本题主要考查正弦型函数的图像和性质,考查正弦型函数的解析式的求法,意在考查学生对这些知识的理解能力掌握水平和分析推理能力.9.已知正四凌锥的所有棱长都相等,高为,则该正四棱锥的表面积为_.【答案】【解析】【分析】设正四棱锥的棱长为2a,根据求得a=1,再求正四棱锥的表面积.【详解】设正四棱锥的棱长为2a,由题得.所以四棱锥的棱长为2.所以正四棱锥的表面积=.故答案为:【点睛】本题主要考查几何体的边长的计算和表面积的计算,意在考查学生对这些知识的理解能力掌握水平和空间观察想象能力.10.已知函数是定义在上的奇函数,且当时,则不等式的解集为_.【答案】【解析】【分析】利用函数的奇偶性求出函数的表达式,然后解不等式件即可【详解】设,则,所以因为是定义在上的奇函数,所以,所以,所以当时,当时,.当时,当0时,.所以0.当x0时, 所以-2x0.综上不等式的解集为.故答案为:【点睛】本题主要考查函数的奇偶性和函数的图像和性质,考查函数不等式的解法,意在考查学生对这些知识的理解能力掌握水平和分析推理能力.11.在平面直角坐标系中,已知点,.若圆上存在唯一点,使得直线,在轴上的截距之积为,则实数的值为_.【答案】【解析】【分析】根据题意,设的坐标为,据此求出直线、的方程,即可得求出两直线轴上的截距,分析可得,变形可得,即可得的轨迹方程为,据此分析可得圆与有且只有一个公共点,即两圆内切或外切,又由圆心距为,则两圆只能外切,结合圆与圆的位置关系可得,解可得的值,即可得答案【详解】根据题意,设的坐标为,直线的方程为,其在轴上的截距为,直线的方程为,其在轴上的截距为,若点满足使得直线,在轴上的截距之积为5,则有,变形可得,则点在圆上,若圆上存在唯一点,则圆与有且只有一个公共点,即两圆内切或外切,又由圆心距为,则两圆只能外切,则有,解可得:,故答案为:【点睛】本题考查轨迹的求法,涉及圆与圆的位置关系,关键是求出的轨迹,属于综合题12.已知是直角三角形的斜边上的高,点在的延长线上,且满足.若,则的值为_.【答案】【解析】【分析】设DPC=,DPB=,先化简得到|PD|=2,再利用数量积的公式展开,利用三角函数和三角和角的余弦公式化简即得解.【详解】设DPC=,DPB=,由题得,所以|PB|所以 =.故答案为:2【点睛】本题主要考查向量的数量积的运算,考查和角的余弦,意在考查学生对这些知识的理解能力掌握水平和分析推理能力.13.已知函数设,且函数的图象经过四个象限,则实数的取值范围为_.【答案】【解析】【分析】先讨论当x0时,f(x)-g(x)=|x+3-kx-1,须使f(x)-g(x)过第三象限,得到k.再讨论当x0时,f(x)-g(x)=, f(x)-g(x)过第四象限,得到k-9.综合即得解.【详解】当x0时,f(x)-g(x)=|x+3-kx-1,须使f(x)-g(x)过第三象限,所以f(-3)-g(-3)0, 解之得k.当x0时,f(x)-g(x)=,因为,所以须使f(x)-g(x)过第四象限,必须综合得-9k.故答案为:【点睛】本题主要考查函数的图像和性质,考查导数研究函数的单调性和极值,意在考查学生对这些知识的理解掌握水平和数形结合分析推理能力.14.在中,若,则的最大值为_.【答案】【解析】【分析】先由题得,再化简得=,再利用三角函数的图像和性质求出最大值.【详解】在ABC中,有,所以=,当即时取等.故答案为:【点睛】本题主要考查三角恒等变换和三角函数的图像和性质,意在考查学生对这些知识的理解能力掌握水平.解题的关键是三角恒等变换.二、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤,请把答案写在答题卡的指定区域内.15.设向量 , ,其中,且与互相垂直.(1)求实数的值;(2)若 ,且,求的值.【答案】(1)1;(2).【解析】【分析】(1)由与互相垂直可得 ,展开化简即得.(2)由 ,得.,最后求 .【详解】解:(1)由与互相垂直,可得 ,所以.又因为,所以.因为,所以,所以.又因为,所以.(2)由(1)知 .由 ,得,即.因为,所以,所以.所以,因此 .【点睛】本题主要考查平面向量的数量积运算,考查三角恒等变换和求值,意在考查学生对这些知识的理解掌握水平和分析推理能力.16.如图,在三棱柱中,分别是和的中点.求证:(1)平面;(2)平面.【答案】(1)详见解析;(2)详见解析.【解析】【分析】(1)连接,证明,即得平面.(2),平面.【详解】证明:(1)连接,在三棱柱中,且,所以四边形是平行四边形.又因为是的中点,所以也是的中点.在中,和分别是和的中点,所以.又因为平面,平面,所以平面.(2)由(1)知,因为,所以.又因为,平面,所以平面.又因为平面,所以.在中,是的中点,所以.因为,平面,所以平面.【点睛】本题主要考查空间几何元素位置关系的证明,意在考查学生对这些知识的理解掌握水平和空间想象分析推理转化能力.17.某公园内有一块以为圆心半径为米的圆形区域.为丰富市民的业余文化生活,现提出如下设计方案:如图,在圆形区域内搭建露天舞台,舞台为扇形区域,其中两个端点,分别在圆周上;观众席为梯形内切在圆外的区域,其中,且,在点的同侧.为保证视听效果,要求观众席内每一个观众到舞台处的距离都不超过米.设,.问:对于任意,上述设计方案是否均能符合要求?【答案】能符合要求【解析】【分析】过作垂直于,垂足为,所以点处观众离点处最远. 由余弦定理可得.再求得. 因为,所以观众席内每一个观众到舞台处的距离都不超过米.【详解】解:过作垂直于,垂足为.在直角三角形中,所以,因此.由图可知,点处观众离点处最远.在三角形中,由余弦定理可知 .因为,所以当时,即时,即.因为,所以观众席内每一个观众到舞台处的距离都不超过米.答:对于任意,上述设计方案均能符合要求.【点睛】本题主要考查三角函数的应用,考查余弦定理和三角函数最值的计算,意在考查学生对这些知识的理解掌握水平和利用数学知识解决实际问题的能力.18.在平面直角坐标系中,已知椭圆的离心率为,且椭圆短轴的一个顶点到一个焦点的距离等于.(1)求椭圆的方程;(2)设经过点的直线交椭圆于,两点,点.若对任意直线总存在点,使得,求实数的取值范围;设点为椭圆的左焦点,若点为的外心,求实数的值.【答案】(1);(2);.【解析】【分析】(1)依题意解之即得椭圆的方程.(2) 设直线的方程为,代入椭圆的方程,根据,解得.,所以,即. 解得.由,即可解得m范围 由,.所以,解得,即可求出m值.【详解】解:(1)依题意解得所以,所以椭圆的方程为.(2)设直线的方程为,代入椭圆的方程,消去,得.因为直线交椭圆于两点,所以,解得.设,则有,.设中点为,则有,.当时,因为,所以,即.解得.当时,可得,符合.因此.由,解得.因为点为的外心,且,所以.由消去,得,所以 ,也是此方程的两个根.所以,.又因为,所以,解得.所以.【点睛】本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系,考查直线和直线的位置关系,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.已知,.(1)当时,求函数图象在处的切线方程;(2)若对任意,不等式恒成立,求的取值范围;(3)若存在极大值和极小值,且极大值小于极小值,求的取值范围.【答案】(1);(2);(3).【解析】【分析】(1)利用导数的几何意义求得函数图象在处的切线方程为.(2)先求导得,再对a分类讨论得到的取值范围.(3对a分类讨论,结合极大值小于极小值求出的取值范围.【详解】解:(1)当时,则.又因为,所以函数图象在处的切线方程为,即.(2)因为所以 ,且.因为,所以.当时,即,因为在区间上恒成立,所以在上单调递增.当时,所以满足条件.当时,即时,由,得,当时,则在上单调递减,所以时,这与时,恒成立矛盾.所以不满足条件.综上,的取值范围为.(3)当时,因为在区间上恒成立,所以在上单调递增,所以不存在极值,所以不满足条件.当时,所以函数的定义域为,由,得,列表如下:极大值极小值由于在是单调减函数,此时极大值大于极小值,不合题意,所以不满足条件.当时,由,得.列表如下:极小值此时仅存在极小值,不合题意,所以不满足条件.当时,函数的定义域为,且,.列表如下:极大值极小值所以存在极大值和极小值,此时 因为,所以,所以,即,所以满足条件.综上,所以的取值范围为.【点睛】本题主要考查导数的几何意义和切线方程,考查利用导数研究极值和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.已知数列各项为正数,且对任意,都有.(1)若,成等差数列,求的值;(2)求证:数列为等比数列;若对任意,都有,求数列的公比的取值范围.【答案】(1)或;(2)详见解析;.【解析】【分析】(1)根据,成等差数列得到,成等比数列,即可求出或.(2)利用定义证明数列为等比数列;当时, ,所以满足条件. 当时,由,得,由于,因此,与任意恒成立相矛盾,所以不满足条件. 综上可得q的取值范围.【详解】解:(1)因为,所以,因此,成等比数列.设公比为,因为,成等差数列,所以,即,于是,解得或,所以或.(2)因为,所以,两式相除得,即,由,得,两式相除得,即,所以,即,由(1)知,所以,因此数列为等比数列.当时,由时,可得,所以,因此 ,所以满足条件.当时,由,得,整理得.因为,所以,因此,即,由于,因此,与任意恒成立相矛盾,所以不满足条件.综上,公比的取值范围为.【点睛】本题主要考查等差数列的性质和等比数列的证明,考查数列的求和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.南京市、盐城市2020届高三年级第二次模拟考试数学附加题【选做题】在A、B、C三小题中只能选做2题,每小题10分,共计20分,请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.A.选修4-2:矩阵与交换21.已知矩阵,.(1)求,的值;(2)求的逆矩阵.【答案】(1);(2).【解析】【分析】(1)由题得即得(2)由题得,即得的逆矩阵.【详解】解:(1)因为,所以即(2)因为,所以.【点睛】本题主要考查矩阵的性质和逆矩阵的求法,意在考查学生对这些知识的理解掌握水平和分析推理能力.【必做题】第22题、第23题,每题10分,共20分,请在答题卡指定区域内作答.解答应写出文字说明、证明过程或演算步骤.22.如图是一旅游景区供游客行走的路线图,假设从进口开始到出口,每遇到一个岔路口,每位游客选择其中一条道路行进是等可能的.现有甲、乙、丙、丁共名游客结伴到旅游景区游玩,他们从进口的岔路口就开始选择道路自行游玩,并按箭头所指路线行走,最后到出口集中,设点是其中的一个交叉路口点.(1)求甲经过点的概率;(2)设这名游客中恰有名游客都是经过点,求随机变量的概率分布和数学期望.【答案】(1);(2)详见解析.【解析】【分析】(1) 选择从中间一条路走到的概率为.选择从最右边的道路走到点的概率为.因为选择中间道路和最右边道路行走的两个事件彼此互斥,所以.(2) 随机变量可能的取值,再求出它们对应的概率,即得随机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论