



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省长沙市望城区白箬中学高三数学第二轮专题讲座复习:三角函数式的化简与求值高考要求 三角函数式的化简和求值是高考考查的重点内容之一 通过本节的学习使考生掌握化简和求值问题的解题规律和途径,特别是要掌握化简和求值的一些常规技巧,以优化我们的解题效果,做到事半功倍 重难点归纳 1 求值问题的基本类型 给角求值,给值求值,给式求值,求函数式的最值或值域,化简求值 2 技巧与方法 要寻求角与角关系的特殊性,化非特角为特殊角,熟练准确地应用公式 注意切割化弦、异角化同角、异名化同名、角的变换等常规技巧的运用 对于条件求值问题,要认真寻找条件和结论的关系,寻找解题的突破口,很难入手的问题,可利用分析法 求最值问题,常用配方法、换元法来解决 典型题例示范讲解 例1不查表求sin220+cos280+cos20cos80的值 错解分析 公式不熟,计算易出错 技巧与方法 解法一利用三角公式进行等价变形;解法二转化为函数问题,使解法更简单更精妙,需认真体会 解法一 sin220+cos280+sin220cos80= (1cos40)+ (1+cos160)+ sin20cos80=1cos40+cos160+sin20cos(60+20)=1cos40+ (cos120cos40sin120sin40)+sin20(cos60cos20sin60sin20)=1cos40cos40sin40+sin40sin220=1cos40(1cos40)= 解法二 设x=sin220+cos280+sin20cos80y=cos220+sin280cos20sin80,则x+y=1+1sin60=,xy=cos40+cos160+sin100=2sin100sin60+sin100=0x=y=,即x=sin220+cos280+sin20cos80= 例2设关于x的函数y=2cos2x2acosx(2a+1)的最小值为f(a),试确定满足f(a)=的a值,并对此时的a值求y的最大值 知识依托 二次函数在给定区间上的最值问题 错解分析 考生不易考查三角函数的有界性,对区间的分类易出错 技巧与方法 利用等价转化把问题化归为二次函数问题,还要用到配方法、数形结合、分类讲座等 解 由y=2(cosx)2及cosx1,1得 f(a)f(a)=,14a=a=2,+或2a1=,解得a=1,此时,y=2(cosx+)2+,当cosx=1时,即x=2k,kZ,ymax=5 例3已知函数f(x)=2cosxsin(x+)sin2x+sinxcosx(1)求函数f(x)的最小正周期;(2)求f(x)的最小值及取得最小值时相应的x的值;(3)若当x,时,f(x)的反函数为f1(x),求f-1(1)的值 命题意图 本题主要考查三角公式、周期、最值、反函数等知识,还考查计算变形能力,综合运用知识的能力 知识依托 熟知三角函数公式以及三角函数的性质、反函数等知识 错解分析 在求f-1(1)的值时易走弯路 技巧与方法 等价转化,逆向思维 解 (1)f(x)=2cosxsin(x+)sin2x+sinxcosx=2cosx(sinxcos+cosxsin)sin2x+sinxcosx=2sinxcosx+cos2x=2sin(2x+)f(x)的最小正周期T=(2)当2x+=2k,即x=k (kZ)时,f(x)取得最小值2 (3)令2sin(2x+)=1,又x,2x+,2x+=,则x=,故f-1(1)= 例4已知,cos()=,sin(+)=,求sin2的值_ 解法一 ,0 +,sin2=sin()+(+)=sin()cos(+)+cos()sin(+)解法二 sin()=,cos(+)=,sin2+sin2=2sin(+)cos()=sin2sin2=2cos(+)sin()=sin2= 学生巩固练习 1 已知方程x2+4ax+3a+1=0(a1)的两根均tan、tan,且,(),则tan的值是( )A B 2 C D 或22 已知sin=,(,),tan()= ,则tan(2)=_ 3 设(),(0,),cos()=,sin(+)=,则sin(+)=_ 4 不查表求值:5 已知cos(+x)=,(x),求的值 参考答案 1 解析 a1,tan+tan=4a0 tan+tan=3a+10,又、(,)、(,),则(,0),又tan(+
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 田螺姑娘考试试题及答案
- Unit 4 The Earth 单元核心素养培优卷(含答案解析)七年级上册英语沪教版
- 2025年公需科目大数据时代的互联网信息安全考试试题及答案
- 2025年高级汽车驾驶员资格证考试题库(含答案)
- 2025年高级会计师资格考试《高级会计实务》试题及答案
- 中考试题压轴题及答案
- 中控初级试题及答案
- 食品营养题库及答案
- 《薪资福利管理办法》
- 两江新区疫情管理办法
- 代运营品牌合作合同范本
- 拆除工程环境保护方案及措施
- 2025年度保密教育线上培训考试部分试题及参考答案
- 18项医疗核心制度题库(含答案)
- 科技美肤基础知识培训课件
- 《幼儿园开学安全第一课》课件
- 2025年度麻精药品抗菌药物抗肿瘤药物培训考核试题(含答案)
- 托幼卫生保健知识培训课件
- 新交际英语(2024)二年级上册全册核心素养教案
- 同济大学《通信原理》2024-2025学年第一学期期末试卷
- 物流业务员培训课件
评论
0/150
提交评论