高考数学 高考试题教学运用与探究 破解复合函数方程(通用)_第1页
高考数学 高考试题教学运用与探究 破解复合函数方程(通用)_第2页
高考数学 高考试题教学运用与探究 破解复合函数方程(通用)_第3页
高考数学 高考试题教学运用与探究 破解复合函数方程(通用)_第4页
高考数学 高考试题教学运用与探究 破解复合函数方程(通用)_第5页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

换元法破解复合函数方程的解复合函数是高考的重点和热点内容之一,可以全面考查学生对函数概念和性质的理解,考查函数与方程、转化与化归、数学结合、分类讨论等数学思想,是高中数学的一个难点如何破解复合函数的有关问题呢?此类问题的破解途径是主要借助于换元法,应用数形结合的数学思想进行求解【例1】已知函数是定义在上的单调函数,且对都有,则_【分析】由于函数具有单调性,函数值为4的值只有一个,必定为一个常数,因此,可以借助于换元法求解函数的解析式.【解析】因为函数是定义在上的单调函数,所以为一个常数;令则,且所以,即,解得:故答案为 【点评】一般地,此类复合函数方程的问题的解决方法是结合函数的图象与性质,应用函数与方程、数形结合的数学思想,结合换元法,灵活赋值,进而探求函数的解析式.【变式1】已知为上增函数,且对任意,都有,则 .【例2】(2012江苏)若函数在处取得极大值或极小值,则称为函数的极值点.已知是实数,1和是函数的两个极值点.(1)求和的值;(2)(略)(3)设,其中,求函数的零点个数.【分析】函数的零点亦即函数对应方程的解本题是复合函数的零点问题,势必要借助于换元法,令,转化为函数的解的问题,应用数形结合的数学思想讨论的解的各种情形,最后,根据所求的的值,再次应用数形结合的数学思想求解的解【解析】解:(1) . (2) (略) (3)首先,还原复合函数的复合过程.令,则.其次,研究内层函数的单调性.因为,,1 -1 -2 2 2 -2 所以,当时, 单调递增;当时, 单调递增;当时, 单调递增,. 如图所示:再次,研究外层函数的零点,即对应方程的解的情况,进而探讨相应的的自变量的解.关于的函数的零点情况,即方程的解的情况.当时,的两个不同的根为,此时,有两个解,有三个解,故有5个解;注意到是奇函数,也有5个解.当时,的三个不同的根为,此时,有三个解,同理,有三个解,有三个解,故有9个解;综上所述,当时,函数有5 个零点;当时,函数有9 个零点. 【评注】复合函数的零点的个数问题主要考查数形结合思想和分类讨论思想,综合性较强,全方位地考查分析问题和解决问题的能力.此类问题的解决的三个环节是:(1)还原复合函数的复合过程; (2)研究内层函数的单调性;(3)研究外层函数的零点,即对应方程的解的情况,进而探讨相应的的自变量的解.【变式2】设函数,函数的零点个数为 【变式3】函数的图象关于直线对称据此可推测,对任意的非零实数关于的函数的零点不可能是A. B. C. D. 【变式4】函数,关于的方程的有三个解,则 .【例3】关于的函数,给出下列四个命题: 存在实数,使得函数恰有2个零点;存在实数,使得函数恰有4个零点;存在实数,使得函数恰有5个零点;存在实数,使得函数恰有8个零点.其中假命题的个数是 ( )A. 0 B. 1 C. 2 D. 4【分析】函数的零点亦即函数对应方程的解复合函数的零点问题,令,转化为函数的零点问题而含有参数的方程的解的个数须转化为两个函数的图象的交点的个数来求解,进而借助于数形结合、分类讨论思想数学思想加以解决【解析】首先,还原复合函数的复合过程;令,则函数;其次,研究内层函数的单调性;作出函数的图象,如图:1 -1 -2 2 2 -2 再次,研究外层函数的零点,即对应方程1 0 的解的情况,进而探讨相应的的自变量的解.(1)当时,方程有一个解,此时,有2解,故函数有2解;(2)当时,方程有两个解,此时,有2解,有3解,故函数有5解;(3)当时,方程有两个解,此时,有4解,也有4解,故函数有8解;(4)当时,方程有一个解,此时,有4解,故函数有4解;(5)当时,方程无解,故函数无解.故选A.【评注】数形结合的思想,其实质是将抽象的数学语言与直观的图象结合起来,关键是代数问题与图形之间的相互转化,可以使代数问题几何化,几何问题代数化复合函数的零点问题,实际上就是复合函数对应方程的解的个数问题,若是仅从方程的角度思考,难以奏效,而从函数图象的角度来考虑却轻松获解,这也就是思维的灵活性【变式5】关于的函数有零点,则的取值范围( )A.或 B. C. D.【变式6】(2020年安徽)已知函数有两个极值点,若,则关于的函数的解的个数为( )A3 B4 C5 D6【变式7】函数,求函数的零点个数. 变式训练提示:变式1【提示】因为函数是定义在上的增函数,所以为一个常数;设,则,。,即,;易知方程有唯一解.故,.答案为10.变式2【提示】或.答案:2.变式3【提示】若函数有四个零点,则必有.答案:D.变式4【提示】函

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论