




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高三数学中档题训练16班级 姓名 1.已知函数()求函数的单调增区间;()已知,且,求的值2.已知数列的前n项和为,且()求数列通项公式;()若,求证数列是等比数列,并求数列的前项和3.在四棱锥PABCD中,ABCACD90,BACCAD60,PA平面ABCD,E为PD的中点,PA2AB2()求四棱锥PABCD的体积V;()若F为PC的中点,求证PC平面AEF;()求证CE平面PAB4.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t(天)的函数,且销售量近似满足g(t)802t(件),价格近似满足(元)()试写出该种商品的日销售额y与时间t(0t20)的函数表达式;()求该种商品的日销售额y的最大值与最小值高三数学中档题训练17班级 姓名 1、为了分析某个高三学生的学习状态,对其下一阶段的学习提供指导性建议。现对他前7次考试的数学成绩、物理成绩进行分析下面是该生7次考试的成绩数学888311792108100112物理949110896104101106()他的数学成绩与物理成绩哪个更稳定?请给出你的证明;()已知该生的物理成绩与数学成绩是线性相关的,若该生的物理成绩达到115分,请你估计他的数学成绩大约是多少?并请你根据物理成绩与数学成绩的相关性,给出该生在学习数学、物理上的合理建议2、在中,已知=9,sin=cossin,面积S =6(1)求的三边的长;(2)设是(含边界)内一点,到三边、的距离分别为x,y和z,求x+y+z的取值范围.3、 已知圆交轴于两点,曲线是以为长轴,直线为准线的椭圆()求椭圆的标准方程;()若是直线上的任意一点,以为直径的圆与圆相交于两点,求证:直线必过定点,并求出点的坐标;()如图所示,若直线与椭圆交于两点,且,试求此时弦的长4已知函数()若,求的单调区间;()若恒成立,求的取值范围高三数学中档题训练18班级 姓名 1由于卫生的要求游泳池要经常换水(进一些干净的水同时放掉一些脏水), 游泳池的水深经常变化,已知泰州某浴场的水深(米)是时间,(单位小时)的函数,记作,下表是某日各时的水深数据t(时)03691215182124y(米)2 52 0152024921511992 5经长期观测的曲线可近似地看成函数 ()根据以上数据,求出函数的最小正周期T,振幅A及函数表达式;()依据规定,当水深大于2米时才对游泳爱好者开放,请依据(1)的结论,判断一天内的上午8 00至晚上20 00之间,有多少时间可供游泳爱好者进行运动 2已知函数(其中且,为实数常数)(1)若,求的值(用表示);(2)若且对于恒成立,求实数m的取值范围(用表示)3、如图所示,在棱长为2的正方体中,、分别为、的中点(1)求证:/平面;(2)求证:;(3)求三棱锥的体积4. 已知数列是公差为的等差数列,数列是公比为的(qR)的等比数列,若函数,且,,(1)求数列和的通项公式;(2)设数列的前n项和为,对一切,都有成立,求高三数学中档题训练19班级 姓名 1、如图,公园有一块边长为2的等边ABC的边角地,现修成草坪,图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.(1)设ADx(x0),EDy,求用x表示y的函数关系式;AEyxDCB(2)如果DE是灌溉水管,为节约成本,希望它最短,DE的位置应在哪里?如果DE是参观线路,则希望它最长,DE的位置又应在哪里?请予证明2. 已知等腰梯形PDCB中(如图1),PB=3,DC=1,PB=BC=,A为PB边上一点,且PA=1,将PAD沿AD折起,使面PAD面ABCD(如图2)。(1)证明:平面PADPCD;(2)试在棱PB上确定一点M,使截面AMC把几何体分成的两部分;(3)在M满足()的情况下,判断直线AM是否平行面PCD.3、已知数列,中,且是函数的一个极值点.(1)求数列的通项公式;(2) 若点的坐标为(1,)(,过函数图像上的点 的切线始终与平行(O 为原点),求证:当 时,不等式对任意都成立. 4、已知函数和点,过点作曲线的两条切线、,切点分别为、(1)设,试求函数的表达式;(2)是否存在,使得、与三点共线若存在,求出的值;若不存在,请说明理由;(3)在(1)的条件下,若对任意的正整数,在区间内总存在个实数,使得不等式成立,求的最大值高三数学中档题训练20班级 姓名 1.已知正方形的外接圆方程为,A、B、C、D按逆时针方向排列,正方形一边CD所在直线的方向向量为(3,1)(1)求正方形对角线AC与BD所在直线的方程;(2)若顶点在原点,焦点在轴上的抛物线E经过正方形在x轴上方的两个顶点A、B,求抛物线E的方程2. 已知数列,其前n项和Sn满足是大于0的常数),且a1=1,a3=4.(1)求的值;(2)求数列的通项公式an;(3)设数列的前n项和为Tn,试比较与Sn的大小. 3.已知二次函数满足:对任意实数x,都有,且当(1,3)时,有成立。(1)证明:;(2)若的表达式;(3)设 ,,若图上的点都位于直线的上方,求实数m的取值范围。4.已知定义在R上的函数,其中a为常数.(1)若x=1是函数的一个极值点,求a的值;(2)若函数在区间(1,0)上是增函数,求a的取值范围;(3)若函数,在x=0处取得最大值,求正数a的取值范围.高三数学中档题训练161解:() 4分由,得函数的单调增区间为 7分()由,得 10分,或,即或 , 14分2解:()n2时, 4分n1时,适合上式, 5分(), 8分即数列是首项为4、公比为2的等比数列 10分, 12分Tn 14分3解:()在RtABC中,AB1,BAC60,BC,AC2在RtACD中,AC2,CAD60,CD2,AD4SABCD 3分则V 5分()PACA,F为PC的中点,AFPC 7分PA平面ABCD,PACDACCD,PAACA,CD平面PACCDPC E为PD中点,F为PC中点,EFCD则EFPC 9分AFEFF,PC平面AEF 10分()证法一:取AD中点M,连EM,CM则EMPAEM 平面PAB,PA平面PAB,EM平面PAB 12分在RtACD中,CAD60,ACAM2,ACM60而BAC60,MCABMC 平面PAB,AB平面PAB,MC平面PAB 14分EMMCM,平面EMC平面PABEC平面EMC,EC平面PAB 15分证法二:延长DC、AB,设它们交于点N,连PNNACDAC60,ACCD,C为ND的中点 12分E为PD中点,ECPN14分EC 平面PAB,PN 平面PAB,EC平面PAB 15分4解:() 4分 8分()当0t10时,y的取值范围是1200,1225,在t5时,y取得最大值为1225; 11分当10t20时,y的取值范围是600,1200,在t20时,y取得最小值为600 14分(答)总之,第5天,日销售额y取得最大为1225元;第20天,日销售额y取得最小为600元 15分高三数学中档题训练171解:(); ; 4分, 从而,所以物理成绩更稳定。 8分()由于与之间具有线性相关关系, 11分线性回归方程为。当时,。 13分建议:进一步加强对数学的学习,提高数学成绩的稳定性,将有助于物理成绩的进一步提高。 15分2、解:设(1), ,由,用余弦定理得 (2) 设,由线性规划得 3解:()设椭圆的标准方程为,则:,从而:,故,所以椭圆的标准方程为。 4分()设,则圆方程为 6分与圆联立消去得的方程为, 过定点。 9分()解法一:设,则, ,即: 代入解得:(舍去正值), 12分,所以,从而圆心到直线的距离,从而。 15分解法二:过点分别作直线的垂线,垂足分别为,设的倾斜角为,则:,从而, 11分由得:,故,由此直线的方程为,以下同解法一。 15分解法三:将与椭圆方程联立成方程组消去得:,设,则11分,所以代入韦达定理得:, 消去得:,由图得:, 13分所以,以下同解法一。 15分4解:(),其定义域是令,得,(舍去)。 3分当时,函数单调递增;当时,函数单调递减;即函数的单调区间为,。 6分()设,则, 8分当时,单调递增,不可能恒成立, 10分当时,令,得,(舍去)。当时,函数单调递增; 当时,函数单调递减; 13分故在上的最大值是,依题意恒成立, 即,又单调递减,且,故成立的充要条件是,所以的取值范围是。 16分高三数学中档题训练18 1.解 (1)由表中数据,知, 由得 由,得 所以, 振幅A=,y=.8分(2)由题意知,当时,才可对冲浪者开放 2, 0 ,即有,由,故可令,得或或 1.4分在规定时间内有6个小时可供游泳爱好者运动即上午9 00至下午15 00.15分2、【解】(1)当时,当时,. .2分由条件可知,,即解得6分 .8分(2)当时, 10分即 13分故m的取值范围是 .16分3、证明:(1)连结,在中,、分别为,的中点,则(2)(3) 且 , 即= 4.解 (1)数列是公差为的等差数列,且 .4分数列是公比为的(qR)的等比数列,且, .8分(2) ,.10分 .12分 设 .14分综上.16分高三数学中档题训练191、(1)在ADE中,y2x2AE22xAEcos60y2x2AE2xAE,又SADE SABCa2xAEsin60xAE2.代入得y2x22(y0), y(1x2).6分(2)如果DE是水管y,当且仅当x2,即x时“”成立,故DEBC,且DE.如果DE是参观线路,记f(x)x2,可知函数在1,上递减,在,2上递增,故f(x) maxf(1)f(2)5. y max.即DE为AB中线或AC中线时,DE最长.。8分2.(I)证明:依题意知: (II)由(I)知平面ABCD 平面PAB平面ABCD. 在PB上取一点M,作MNAB,则MN平面ABCD,设MN=h则 要使即M为PB的中点. (III)以A为原点,AD、AB、AP所在直线为x,y,z轴,建立如图所示的空间直角坐标系则A(0,0,0),B(0,2,0),C(1,1,0),D(1,0,0),P(0,0,1),M(0,1,)由(I)知平面,则的法向量。又为等腰因为所以AM与平面PCD不平行. 3、解:(1)由是首项为,公比为的等比数列当时, 所以 (2)由得: (作差证明) 综上所述当 时,不等式对任意都成立. 4.解:(1)设、两点的横坐标分别为、, , 切线的方程为:,又切线过点, 有,即, (1) 同理,由切线也过点,得(2)由(1)、(2),可得是方程的两根, ( * ) ,把( * )式代入,得,因此,函数的表达式为 6分(2)当点、与共线时,即,化简,得,(3) 把(*)式代入(3),解得存在,使得点、与三点共线,且 10分(3)易知在区间上为增函数,则依题意,不等式对一切的正整数恒成立, ,即对一切的正整数恒成立, ,由于为正整数, 又当时,存在,对所有的满足条件因此,的最大值为 16分高三数学中档题训练201. (1) 由(x12)2+y2=144a(a2时,3. 解:(1)由条件知 恒成立又取x=2时,与恒成立,.(2) . 又
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 医疗设备质量管理体系建设探讨
- 区款链技术助力企业实现办公自动化
- 乡下耕地出售合同范例
- 嗳气的临床护理
- 厦门市2025 届高三毕业班第四次质量检测-英语+答案
- 医疗数字化与区块链数字身份认证的协同发展
- 小学社团活动总结模版
- 医疗空间中的绿色疗愈效果探索
- 医疗服务流程优化对提高患者满意度的影响研究
- 光伏公司租赁合同范例
- DB32-T 2355-2022 综合交通建设试验检测用表编制规范(修)
- 神经介入患者围术期管理
- 八年级体育教案(全册)
- 2022新高考卷小说《江上》 答案+评点
- 装配式挡墙专项施工方案
- 1-2会员代表选票
- 年成都远洋太古里案例解析(p)PPT课件
- 知识产权战略案例分析
- 沪科七年级数学下册 实数单元综合测试卷解析
- 污水厂设备管理培训(共110页).ppt
- 雍琦版-《法律逻辑学》课后习题答案(共78页)
评论
0/150
提交评论