



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题14 导数在研究函数中的应用(二)学一学-基础知识结论1.可导函数的极值(1)极值的概念:设函数在点附近有定义,且若对附近的所有的点都有(或),则称为函数的一个极大(小)值,称为极大(小)值点.(2)求可导函数极值的步骤:求导数。求方程的根. 求方程的根.检验在方程的根的左右的符号,如果在根的左侧附近为正,右侧附近为负,那么函数在这个根处取得极大值;如果在根的右侧附近为正,左侧附近为负,那么函数在这个根处取得极小值.温馨提醒:在求可导函数的极值时,应注意:(以下将导函数取值为0的点称为函数的驻点可导函数的极值点一定是它的驻点,注意一定要是可导函数。例如函数在点处有极小值=0,可是这里的根本不存在,所以点不是的驻点.(1) 可导函数的驻点可能是它的极值点,也可能不是极值点。例如函数的导数,在点处有,即点是的驻点,但从在上为增函数可知,点不是的极值点.(2) 求一个可导函数的极值时,常常把驻点附近的函数值的讨论情况列成表格,这样可使函数在各单调区间的增减情况一目了然.2.函数的最大值和最小值(1)设是定义在区间上的函数,在内有导数,求函数在上的最大值与最小值,可分两步进行.求在内的极值.将在各极值点的极值与、比较,其中最大的一个为最大值,最小的一个为最小值.(2)若函数在上单调增加,则为函数的最小值,为函数的最大值;若函数在上单调递减,则为函数的最大值,为函数的最小值.温馨提醒:极大(小)值与最大(小)值的区别与联系:极值是局部性概念,最大(小)值可以看作整体性概念,因而在一般情况下,两者是有区别的.极大(小)值不一定是最大(小)值,最大(小)值也不一定是极大(小)值,但如果连续函数在区间内只有一个极值,那么极大值就是最大值,极小值就是最小值.3. 生活中的优化问题解决优化问题的基本思路是:温馨提醒:在求实际问题中的最大值和最小值时,一般是先找出自变量、因变量,建立函数关系式,并确定其定义域.如果定义域是一个开区间,函数在定义域内可导(其实只要是初等函数,它在自己的定义域内必然可导),并且按常理分析,此函数在这一开区间内应该有最大(小)值(如果定义域是闭区间,那么只要函数在此闭区间上连续,它就一定有最大(小).记住这个定理很有好处),然后通过对函数求导,发现定义域内只有一个驻点,那么立即可以断定在这个驻点处的函数值就是最大(小)值。知道这一点是非常重要的,因为它在应用上较为简便,省去了讨论驻点是否为极值点,求函数在端点处的值,以及同函数在极值点处的值进行比较等步骤.学一学-方法规律技巧1求函数的极值,最值极值与极值点在概念上的区别,这是解题的一个易错点;在用导数求函数极值时,要养成求导之后列表的好习惯一个常用的结论:如果函数图象是连续不断的,在开区间内只有一个极值,则该极值就是它的最值例1已知函数,(1)若,求函数的极值;(2)若函数在上单调递减,求实数的取值范围.【答案】(1)极大值,无极小值;(2);(3)不存在符合题意的两点.【解析】(1)的定义域为,故单调递增;单
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- Unit 8 Let's celebrate!(Reading) 教学设计 译林版(2024)七年级英语上册
- 2.2 海陆的变迁(教学设计)七年级地理上册同步备课系列(人教版)
- 患者突发呼吸心搏骤停的应急演练演练脚本(2篇)
- 中小学生防溺水知识竞赛题库及答案(完整版)
- 2024年公路水运工程施工企业安全生产管理人员考试试题及答案
- 《长恨歌》选段教学设计初中音乐人教版八年级下册-人教版
- 胶囊剂与滴丸剂案例版
- 教师综合素质面试模拟材料分析题
- 人教版九年级化学上册 第五单元 课题二 如何正确书写化学方程式 说课稿
- 2.6《网络信息搜索》教学设计-鲁教版(2024)初中信息技术七年级上册
- 医疗质量与安全教育培训
- 2024年江苏省生态环境监测专业技术人员大比武竞赛备考试题库(含答案)
- 《手足口病》课件
- 山东省地震安全性评价收费项目及标准
- 复旦大学入学教育考试答案
- 中国马克思主义与当代-第三讲课件
- 拼多多民事起诉状模板
- 冠心病合并急性心律失常的紧急处理
- 飞利浦品牌形象指南2008基础原则
- 结胸证-伤寒学
- 第一季度胸痛中心典型病例分析会
评论
0/150
提交评论