


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第五教时教材:极值定理的应用目的:要求学生更熟悉基本不等式和极值定理,从而更熟练地处理一些最值问题。过程:一、 复习:基本不等式、极值定理二、 例题:1求函数的最大值,下列解法是否正确?为什么?解一: 解二:当即时 答:以上两种解法均有错误。解一错在取不到“=”,即不存在使得;解二错在不是定值(常数)正确的解法是:当且仅当即时2若,求的最值解: 从而 即3设且,求的最大值解: 又即4已知且,求的最小值解: 当且仅当即时三、 关于应用题1P11例(即本章开头提出的问题)(略)2将一块边长为的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?解:设剪去的小正方形的边长为则其容积为当且仅当即时取“=”即当剪去的小正方形的边长为时,铁盒的容积为四、 作业:P12 练习4 习题6.2 7补充:1求下列函数的最值:1 (min=6)2 () 21时求的最小值,的最小值2设,求的最大值(5)3若, 求的最大值4若且,求的最小值3若,求证:的最小值为34制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度婚姻终止及财产分割全面协议
- 2025广东云浮市郁南县兴华产业投资有限公司招聘员工1人笔试参考题库附答案解析
- 2025浙江丽水市旅投酒店管理有限公司招聘食堂工作人员笔试模拟试题及答案解析
- 2025年河北沧州东光事业单位招聘工作人员108名笔试参考题库附答案解析
- 2025年盘锦市急救医疗中心公开招聘6名事业编制工作人员考试备考试题及答案解析
- 2025陕西西安航空学院专职辅导员、教学秘书招聘8人笔试参考题库附答案解析
- 2025湖北襄阳宜城市部分事业单位招聘工作人员41人考试模拟试题及答案解析
- 2025云南昆明中机中联工程有限公司招聘2人考试备考试题及答案解析
- 2025年8月广东广州市天河区龙口中路幼儿园编外聘用制专任教师招聘1人考试备考试题及答案解析
- 2025四川凉山州西昌市招聘社区工作者64人笔试参考题库附答案解析
- 隧洞施工安全教育培训
- 吉林大学《数据库系统原理(双语)》2021-2022学年期末试卷
- 2024-2025学年九年级化学上册第3章《物质构成的奥秘》单元测试卷(沪教版2024新教材)
- 2024年第九届“学宪法 讲宪法”竞赛题库及答案
- 婚内债务夫妻方承担协议书
- 部编小学语文四年级上册第8单元省级获奖大单元作业设计
- SMT-快速换线推进报告-.课件11
- 楼板下加钢梁加固施工方案
- 斜坡脚手架搭设施工方案
- 建筑行业人才培养与发展战略研讨会
- 成人高等教育学士学位英语核心单词+短语
评论
0/150
提交评论