

免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高一数学数列的概念与简单表示法第2课时教案教学目标知识与技能:了解数列的递推公式,明确递推公式与通项公式的异同;会根据数列的递推公式写出数列的前几项;理解数列的前n项和与的关系过程与方法:经历数列知识的感受及理解运用的过程。情感态度与价值观:通过本节课的学习,体会数学来源于生活,提高数学学习的兴趣。教学重点根据数列的递推公式写出数列的前几项教学难点理解递推公式与通项公式的关系教学过程.课题导入复习引入数列及有关定义.讲授新课数列的表示方法1、 通项公式法如果数列的第n项与序号之间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的通项公式。如数列 的通项公式为 ; 的通项公式为 ; 的通项公式为 ;2、 图象法启发学生仿照函数图象的画法画数列的图形具体方法是以项数 为横坐标,相应的项 为纵坐标,即以 为坐标在平面直角坐标系中做出点(以前面提到的数列 为例,做出一个数列的图象),所得的数列的图形是一群孤立的点,因为横坐标为正整数,所以这些点都在 轴的右侧,而点的个数取决于数列的项数从图象中可以直观地看到数列的项随项数由小到大变化而变化的趋势3、 递推公式法知识都来源于实践,最后还要应用于生活用其来解决一些实际问题 观察钢管堆放示意图,寻其规律,建立数学模型 模型一:自上而下: 第1层钢管数为4;即:141+3 第2层钢管数为5;即:252+3 第3层钢管数为6;即:363+3 第4层钢管数为7;即:474+3 第5层钢管数为8;即:585+3 第6层钢管数为9;即:696+3 第7层钢管数为10;即:7107+3若用表示钢管数,n表示层数,则可得出每一层的钢管数为一数列,且n7)运用每一层的钢筋数与其层数之间的对应规律建立了数列模型,运用这一关系,会很快捷地求出每一层的钢管数这会给我们的统计与计算带来很多方便。让同学们继续看此图片,是否还有其他规律可循?(启发学生寻找规律)模型二:上下层之间的关系自上而下每一层的钢管数都比上一层钢管数多1。即;依此类推:(2n7)对于上述所求关系,若知其第1项,即可求出其他项,看来,这一关系也较为重要。定义:递推公式:如果已知数列的第1项(或前几项),且任一项与它的前一项(或前n项)间的关系可以用一个公式来表示,那么这个公式就叫做这个数列的递推公式递推公式也是给出数列的一种方法。如下数字排列的一个数列:3,5,8,13,21,34,55,89递推公式为:数列可看作特殊的函数,其表示也应与函数的表示法有联系,首先请学生回忆函数的表示法:列表法,图象法,解析式法相对于列表法表示一个函数,数列有这样的表示法:用 表示第一项,用 表示第一项,用 表示第 项,依次写出成为4、列表法简记为 范例讲解例3 设数列满足写出这个数列的前五项。解:分析:题中已给出的第1项即,递推公式:解:据题意可知:,补充例题例4已知, 写出前5项,并猜想 法一: ,观察可得 法二:由 即 .课堂练习课本P36练习2补充练习1根据各个数列的首项和递推公式,写出它的前五项,并归纳出通项公式(1) 0, (2n1) (nN);(2) 1, (nN);(3) 3, 32 (nN). 解:(1) 0, 1, 4, 9, 16, (n1);(2) 1, , , ;(3) 31+2, 71+2, 191+2, 551+2, 1631+2, 123;.课时小结本节课学习了以下内容:1递推公式及其用法;2通项公式反映的是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年沧州市公务员考试行测试卷历年真题参考答案详解
- 2022年湖北省老河口市中考数学高分题库【夺冠系列】附答案详解
- 2022年2月昌都地区税务系统遴选面试真题带答案详解
- 2022年浙江省永康市中考数学练习题(完整版)附答案详解
- 走进电世界知到智慧树答案
- 院感培训考试试题(附答案)
- 2023年度甘肃省玉门市中考数学试卷(培优A卷)附答案详解
- 2024年青海安全生产月知识培训考试试题及参考答案
- 危重病人抢救与配合试题及答案
- 走进神奇的长白山植物世界知到智慧树答案
- 《资本运营理论与实务》自考各章习题集及其重要资料复习资料
- 中建幕墙工程专项施工方案
- 无诉讼仲裁承诺书(共7篇)
- 深圳福田狮岭小学谢非FRANKTHERAT
- 校园突发事件与应急管理
- 护理科研选题与论文写作
- GA 1301-2016火灾原因认定规则
- TTT培训师培训课件(-)
- 学校学生健康体检知识培训课件
- 脚手架作业安全管理培训
- 经颈静脉肝内门体分流术(TIPS)的护理课件
评论
0/150
提交评论