

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1.1 方程的根与函数的零点学习目标1.了解函数零点的概念,领会方程的根与函数零点之间的关系;2.掌握函数零点存在性判定定理;3.能结合图象求解零点问题学习重点难点重点:零点的概念及存在性的判定难点:零点存在性的判定.知识链接或储备预习教材P86知识质疑解疑与探究问题探究1:函数零点的定义问题1:考察下列一元二次方程与对应的二次函数:(1)方程x22x30与函数yx22x3;(2)方程x22x10与函数yx22x1; (3)方程x22x30与函数yx22x3.你能列表表示出方程的根,函数的图象及图象与x轴交点坐标吗?方程x22x30x22x10x22x30函数yx22x3yx22x1yx22x3函数的图像方程的实数根函数的图像与x轴的交点问题2: 从表中你能得到什么结论?问题3: 在问题2得出的结论对一元二次函数yax2bxc (a0)和相应一元二次方程ax2bxc0(a0)也成立吗?你能根据判别式的不同情况也用列表的形式加以说明吗?判别式b24ac000方程ax2bxc0(a0)的根函数yax2bxc(a0)的图象函数的图象与x轴的交点问题4:一元二次函数图象与x轴交点的横坐标与相应一元二次方程的实数根的关系能推广到更一般的情况吗?即对于方程f(x)0与函数yf(x)上述结论还适应吗?问题5:函数yf(x)有零点可等价于哪些说法?小结:函数的零点不是点,而是函数所对应的方程的根,它具有数与形的双重意义。问题6:你能说出函数ylg x;ylg(x1); y2x;y2x2的零点吗?例1已知函数yax2bxc,若ac0,则函数f(x)的零点个数是()A0 B1 C2 D不确定小结求函数的零点或判断零点的个数除了利用零点的定义外,还经常利用其等价的结论试试:函数yx24x5的零点是()A(1,0),(5,0) B(1,0) C. (5,0) D1和5问题探究2:函数零点存在性定理问题1观察二次函数f(x)x22x3的图象,发现这个二次函数在区间2,1上有零点x1,而f(2)0,f(1)0,即f(2)f(1)0.二次函数在区间2,4上有零点x3,而f(2)0,f(4)0,即f(2)f(4)0.由以上两步探索,你可以得出什么样的结论?问题2如果函数yf(x)在区间a,b上的图象是间断的,上述定理成立吗?问题3如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,函数yf(x)在区间(a,b)上存在零点,f(a)f(b)0是否一定成立?偶问题4如果函数yf(x)在区间a,b上的图象是连续不断的一条曲线,并且有f(a)f(b)0,满足了上述两个条件后,函数的零点是唯一的吗? 还要添加什么条件可以保证函数有唯一零点?例2求函数f(x)ln x2x6的零点的个数作出x、f(x)的对应值表和图象如下:x123456789f(x)41.30691.09863.38635.60947.79189.945912.079414.1972思考:由上表和图像可知?例3求函数f(x)2xlg(x1)2的零点个数小结判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来确定零点的存在性,然后借助于函数的单调性判断零点的个数(2)利用函数图象判定函数零点的个数拓展提升与巩固训练方程的根与函数的零点的关系,并给出判定方程在某个区产存在根的基本步骤当堂检测1利用函数图象判断下列方程有没有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论