江苏南化一中高三数学二轮复习1函数学案_第1页
江苏南化一中高三数学二轮复习1函数学案_第2页
免费预览已结束,剩余3页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1函数一、函数的定义、分段函数的定义和理解二、函数的性质1定义域(自然定义域、分段函数的定义域、应用题中的定义域、复合函数的定义域等);2值域(求值域:分拆法、图象法、单调性法、基本不等式法、换元法、判别式法等);3奇偶性(在整个定义域内考虑)(1)定义:(2)判断方法:.定义法步骤:求出定义域并判断定义域是否关于原点对称;求; 比较或的关系;.图象法(3)常用的结论已知:若非零函数的奇偶性相同,则在公共定义域内为偶函数;若非零函数的奇偶性相反,则在公共定义域内为奇函数;若是奇函数,且,则.4单调性(在定义域的某一个子集内考虑)(1)定义:(2)证明函数单调性的方法:.定义法 步骤:设;作差(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。.(多项式函数)用导数证明: 若在某个区间A内有导数,则 在A内为增函数; 在A内为减函数.(3)求单调区间的方法: a.定义法: b.导数法: c.图象法: d.复合函数在公共定义域上的单调性:若f与g的单调性相同,则为增函数; 若f与g的单调性相反,则为减函数。注意:先求定义域,单调区间是定义域的子集.(4)一些有用的结论:奇函数在其对称区间上的单调性相同;偶函数在其对称区间上的单调性相反;在公共定义域内:增函数增函数是增函数;减函数减函数是减函数;增函数减函数是增函数;减函数增函数是减函数。 一个重要的函数:函数在上单调递增;在上是单调递减.5函数的周期性(1)定义:若T为非零常数,对于定义域内的任一x,使恒成立,则叫做周期函数,T叫做这个函数的一个周期.举例:若函数在R上是奇函数,且在上是增函数,且,则关于 对称;的周期为 ;在(1,2)是 函数(增、减);若(0,1)时=,则= 。三、函数的图象1基本函数的图象:(1)一次函数、(2)二次函数、(3)反比例函数、(4)指数函数、(5)对数函数、(6)三角函数、(7)函数.2图象的变换(1)平移变换函数的图象是把函数的图象沿轴向左平移个单位得到的;函数的图象是把函数的图象沿轴向右平移个单位得到的;函数的图象是把函数的图象沿轴向上平移个单位得到的;函数的图象是把函数的图象沿轴向下平移个单位得到的;(2)对称变换函数与函数的图象关于直线x=0对称;函数与函数的图象关于直线y=0对称;函数与函数的图象关于坐标原点对称;如果函数对于一切都有 ,那么 的图象关于直线对称;如果函数对于一切都有,那么 的图象关于点对称。函数与函数的图象关于直线对称。 与关于直线对称。(3)伸缩变换(主要在三角函数的图象变换中)举例:已知函数的图象过点(1,1),则的反函数的图象过点 。四、函数的反函数1求反函数的步骤:(1)求原函数的值域B(2)把看作方程,解出(注意开平方时的符号取舍);(3)互换x、y,得的反函数为.2定理:(1),即点在原函数图象上点在反函数图象上;(2)原函数与反函数的图象关于直线对称.3有用的结论:原函数在区间上单调的,则一定存在反函数,且反函数也单调的,且单调性相同;但一个函数存在反函数,此函数不一定单调。举例1:,的反函数为 。2:设 。 五、函数、方程与不等式1“实系数一元二次方程有实数解”转化为“”,你是否注意到必须;当=0时,“方程有解”不能转化为。若原题中没有指出是“二次”方程、函数或不等式,你是否考虑到二次项系数可能为零的情形?2、利用二次函数的图象和性质,讨论一元二次方程实根的分布。设为方程的两个实根。若则;当在区间内有且只有一个实根,时,当在区间内有且只有两个实根时, 若时注意:根据要求先画出抛物线,然后写出图象成立的充要条件。注意端点,验证端点。六、指数函数与对数函数1指数式与对数式: 对数的三个性质:; 对数恒等式:; 对数运算性质:. . .2指数函数与对数函数(1)定义和关系:(2)特征图象与性质归纳(列表)指数函数y=ax (a0,a1)对数函数y=log ax (a0,a1)特征图象0a10a1定义域(,+)(0,+)值域(0,+)(,+)单调性减函数增函数减函数增函数定点(0,1)(1,0)函数值分布x1;x0时,0y1xo时,0y0时,y10x0;x1时,y0

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论