已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27.2.2相似三角形应用举例,胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”。塔的个斜面正对东南西北四个方向,塔基呈正方形,每边长约多米。据考证,为建成大金字塔,共动用了万人花了年时间.原高米,但由于经过几千年的风吹雨打,顶端被风化吹蚀.所以高度有所降低。,小小旅行家:,走近金字塔,小小考古家:,埃及著名的考古专家穆罕穆德决定重新测量胡夫金字塔的高度.在一个烈日高照的上午.他和儿子小穆罕穆德来到了金字塔脚下,他想考一考年仅14岁的小穆罕穆德.,例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。,如图272-8,如果木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度BO,1.小华为了测量所住楼房的高度,他请来同学帮忙,测量了同一时刻他自己的影长和楼房的影长分别是0.5米和15米已知小华的身高为1.6米,那么他所住楼房的高度为米,2.小明在打网球时,使球恰好能打过网,而且落在离网5米的位置上,求球拍击球的高度h.(设网球是直线运动),A,D,B,C,E,0.8m,5m,10m,?,例2:如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使ABBC,然后,再选点E,使ECBC,用视线确定BC和AE的交点D,此时如果测得BD120米,DC60米,EC50米,求两岸间的大致距离AB,A,D,C,E,B,解:,因为ADBEDC,,ABCECD90,,所以ABDECD,,答:两岸间的大致距离为100米,我们还可以在河对岸选定一目标点A,再在河的一边选点D和E,使DEAD,然后,再选点B,作BCDE,与视线EA相交于点C。此时,测得DE,BC,BD,就可以求两岸间的大致距离AB了。,此时如果测得BD45米,DE90米,BC60米,求两岸间的大致距离AB,例3已知左右并排的两棵大树高分别是AB=8m,CD=12m,两树的根部的距离BD=5m,一个身高1.6m的人沿着正对这两棵树的一条水平直路从左到右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点,1.铁道的栏杆的短臂为OA=1米,长臂OB=10米,短臂端下降AC=0.6米,则长臂端上升BD=米。,6,2.如图:小明想测量电线杆AB的高度,发现电线杆的影子恰好落在土坡的坡面CD和地面CB上,测得CD=4m,BC=10m,CD与地面成30度角,且此时测得1米杆子的影子长为2米,那么电线杆的高度是多少?,A,B,D,C,3.数学兴趣小组测校内一棵树高,有以下两种方法:方法一:如图,把镜子放在离树(AB)8m点E处,然后沿着直线BE后退到D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.8M,观察者目高CD=1.6M;,C,D,E,A,B,A,B,C,3.数学兴趣小组测校内一棵树高,有以下两种方法:方法二:如图,把长为2.40M的标杆CD直立在地面上,量出树的影长为2.80M,标杆影长为1.47M。,分别根据上述两种不同方法求出树高(精确到0.1M),请你自己写出求解过程,并与同伴探讨,还有其他测量树高的方法吗?,F,D,C,E,B,A,如图,已知零件的外径为a,要求它的厚度x,需先求出内孔的直径AB,现用一个交叉卡钳(两条尺长AC和BD相等)去量,若OA:OC=OB:OD=n,且量得CD=b,求厚度x。,O,思考:,(分析:如图,要想求厚度x,根据条件可知,首先得求出内孔直径AB。而在图中可构造出相似形,通过相似形的性质,从而求出AB的长度。),挑战自我,如图,ABC是一块锐角三角形余料,边BC=120毫米,高AD=80毫米,要把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB、AC上,这个正方形零件的边长是多少?,N,M,Q,P,E,D,C,B,A,解:设正方形PQMN是符合要求的ABC的高AD与PN相交于点E。设正方形PQMN的边长为x毫米。因为PNBC,所以APNABC所以,课堂小结:,一、相似三角形的应用主要有如下两个方面1测高(不能直接使用皮尺或刻度尺量的)2测距(不能直接测量的两点间的距离),、测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长的比例”的原理解决,、测距的方法测量不能到达两点间的距离,常构造相似三角形求解,如图,一条河的两岸有一段是平行的,在河的南岸边每隔5米有一棵树,在北岸边每隔50米有一根电线杆小丽站在离南岸边15米的点处看北岸,发现北岸相邻的两根电
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 附中乐理考试题目及答案
- 发动机基础考试题及答案
- 镤矿生产建设项目可行性研究报告
- 靖西市乒乓主题体育公园项目可行性研究报告编制服务采购项目
- 食用菌可行性研究报告
- 高中心理健康试题及答案
- Maya 2024三维设计基础教程(全彩微课版)教学大纲、教案全套
- 2025年中药学类之中药学(中级)题库附答案(典型题)
- 2025年中级银行从业资格之中级风险管理真题练习试卷B卷附答案
- 铁路道口协议书
- 2025年中国宠物用羊奶粉行业市场全景分析及前景机遇研判报告
- 辽医药护理中职单招题库及答案解析
- 2025年电工职业技能鉴定试卷(初级工)实操试题及答案解析
- 2025年P气瓶充装证模拟考试题及答案
- 小学生心理健康教育课程的设计与实施研究
- 2025全国消防安全培训课件
- 电梯安装技术交底
- 卵巢癌的课件
- 高三生物一轮复习42特异性免疫教学设计
- 单位验收监理汇报材料
- 2025年四川省高考化学试卷真题(含答案解析)
评论
0/150
提交评论