已阅读5页,还剩30页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
一元二次方程根与系数的关系,题1口答下列方程的两根和与两根积各是多少?.X23X+1=0.3X22X=2.2X2+3X=0.3X2=1,基本知识,根与系数的关系:,(a,b,c为常数,a0),的两根分别为X1,X2,请利用一元二次方程的求根公式验证,在使用根与系数的关系时,应注意:不是一般式的要先化成一般式;在使用X1+X2=时,注意“”不要漏写。,题2已知两圆的半径是一元二次方程的两个根,两圆的圆心距等于7,则这两圆的位置关系是()A、外离B、相交C、外切、内切,C,练习1,已知关于x的方程,当m=时,此方程的两根互为相反数.,当m=时,此方程的两根互为倒数.,1,1,分析:1.,2.,注意:=b2-4ac0,4,1,14,12,题,则:,应用:一求值,另外几种常见的求值,求与方程的根有关的代数式的值时,一般先将所求的代数式化成含两根之和,两根之积的形式,再整体代入.,练习2,设的两个实数根为则:的值为()A.1B.1C.D.,A,以为两根的一元二次方程(二次项系数为1)为:,二已知两根求作新的方程,题4.点p(m,n)既在反比例函数的图象上,又在一次函数的图象上,则以m,n为根的一元二次方程为(二次项系数为1):,解:由已知得,即,mn=2m+n=2,所求一元二次方程为:,题5以方程X2+3X-5=0的两个根的相反数为根的方程是()A、y23y-5=0B、y23y-5=0C、y23y5=0D、y23y5=0,B,分析:设原方程两根为则:,新方程的两根之和为,新方程的两根之积为,求作新的一元二次方程时:1.先求原方程的两根和与两根积.2.利用新方程的两根与原方程的两根之间的关系,求新方程的两根和与两根积.(或由已知求新方程的两根和与两根积)3.利用新方程的两根和与两根积,求作新的一元二次方程.,练习:1.以2和为根的一元二次方程(二次项系数为)为:,题6已知两个数的和是1,积是-2,则两个数是。,2和-1,解法(一):设两数分别为x,y则:,解得:,x=2y=1,或,1y=2,解法(二):设两数分别为一个一元二次方程的两根则:,求得,两数为2,三已知两个数的和与积,求两数,题7如果1是方程的一个根,则另一个根是_=_。,(还有其他解法吗?),-3,四求方程中的待定系数,题8已知方程的两个实数根是且求k的值。,解:由根与系数的关系得X1+X2=-k,X1X2=k+2又X12+X22=4即(X1+X2)2-2X1X2=4K2-2(k+2)=4K2-2k-8=0,=K2-4k-8当k=4时,0当k=-2时,0k=-2,解得:k=4或k=2,题9在ABC中a,b,c分别为A,B,C的对边,且c=,若关于x的方程有两个相等的实数根,又方程的两实数根的平方和为6,求ABC的面积.,五综合,小结:1、熟练掌握根与系数的关系;2、灵活运用根与系数关系解决问题;3、探索解题思路,归纳解题思想方法。,作业:试卷课后练习,题9方程有一个正根,一个负根,求m的取值范围。,解:由已知,=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【549】艺术疗法的概述
- 广东省深圳市南山区外国语学校2025-2026学年九年级(上)期末化学试卷(含答案)
- 12月固定收益月报:12月债市能迎来“顺风局”吗
- 飞机部件介绍
- 2026春季贵州安顺市普定县第五幼儿园学期教职工招聘15人(幼儿教师保育教师厨房人员)参考考试题库及答案解析
- 2026年甘肃省兰州市学府致远学校春季教师招聘12人考试参考试题及答案解析
- 隐静脉主干消融同期与分期处理属支
- 2026江西江铜南方公司第六批次社会招聘4人笔试备考题库及答案解析
- 2026湖南邵阳市邵阳县社会工作事务中心选调人员1人参考考试题库及答案解析
- 清廉元宵活动方案策划(3篇)
- 2025年学校领导干部民主生活会“五个带头”对照检查发言材料
- 浙江省绍兴市上虞区2024-2025学年七年级上学期语文期末教学质量调测试卷(含答案)
- 赵然尊:胸痛中心时钟统一、时间节点定义与时间管理
- DB21T 3414-2021 辽宁省防汛物资储备定额编制规程
- 2024年度中国LCOS行业研究报告:广泛应用于投影、AR/VR、车载HUD的微显示技术
- 2024金属材料弯曲试验方法
- 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)解读
- DB11-T 1253-2022 地埋管地源热泵系统工程技术规范
- 2024-2029年滴漏式咖啡机行业市场现状供需分析及市场深度研究发展前景及规划投资研究报告
- 《审计法》修订解读
- 江苏省姜堰市励才实验学校2024届七年级数学第一学期期末经典试题含解析
评论
0/150
提交评论