初三数学考点_第1页
初三数学考点_第2页
初三数学考点_第3页
初三数学考点_第4页
初三数学考点_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 常量和变量在某变化过程中可以取不同数值的量,叫做变量在某变化过程中保持同一数值的量或数,叫常量或常数2函数设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数3自变量的取值范围(1)整式:自变量取一切实数(2)分式:分母不为零(3)偶次方根:被开方数为非负数(4)零指数与负整数指数幂:底数不为零4函数值对于自变量在取值范围内的一个确定的值,如当xa时,函数有唯一确定的对应值,这个对应值,叫做xa时的函数值5函数的表示法(1)解析法;(2)列表法;(3)图象法6函数的图象把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象由函数解析式画函数图象的步骤:(1)写出函数解析式及自变量的取值范围;(2)列表:列表给出自变量与函数的一些对应值;(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来7一次函数(1)一次函数如果ykxb(k、b是常数,k0),那么y叫做x的一次函数特别地,当b0时,一次函数ykxb成为ykx(k是常数,k0),这时,y叫做x的正比例函数(2)一次函数的图象一次函数ykxb的图象是一条经过(0,b)点和 点的直线特别地,正比例函数图象是一条经过原点的直线需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数ykxb(k0)的图象”,因为还有直线ym(此时k0)和直线xn(此时k不存在),它们不是一次函数图象(3)一次函数的性质当k0时,y随x的增大而增大;当k0时,y随x的增大而减小直线ykxb与y轴的交点坐标为(0,b),与x轴的交点坐标为 (4)用函数观点看方程(组)与不等式任何一元一次方程都可以转化为axb0(a,b为常数,a0)的形式,所以解一元一次方程可以转化为:一次函数ykxb(k,b为常数,k0),当y0时,求相应的自变量的值,从图象上看,相当于已知直线ykxb,确定它与x轴交点的横坐标二元一次方程组 对应两个一次函数,于是也对应两条直线,从“数”的角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标任何一元一次不等式都可以转化axb0或axb0(a、b为常数,a0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围8反比例函数(1)反比例函数如果 (k是常数,k0),那么y叫做x的反比例函数(2)反比例函数的图象反比例函数的图象是双曲线(3)反比例函数的性质当k0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小当k0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大反比例函数图象关于直线yx对称,关于原点对称(4)k的两种求法若点(x0,y0)在双曲线 上,则kx0y0k的几何意义:若双曲线 上任一点A(x,y),ABx轴于B,则SAOB (5)正比例函数和反比例函数的交点问题若正比例函数yk1x(k10),反比例函数 ,则当k1k20时,两函数图象无交点;当k1k20时,两函数图象有两个交点,坐标分别为 由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称1二次函数如果yax2bxc(a,b,c为常数,a0),那么y叫做x的二次函数几种特殊的二次函数:yax2(a0);yax2c(ac0);yax2bx(ab0);ya(xh)2(a0)2二次函数的图象二次函数yax2bxc的图象是对称轴平行于y轴的一条抛物线由yax2(a0)的图象,通过平移可得到ya(xh)2k(a0)的图象3二次函数的性质二次函数yax2bxc的性质对应在它的图象上,有如下性质:(1)抛物线yax2bxc的顶点是 ,对称轴是直线 ,顶点必在对称轴上;(2)若a0,抛物线yax2bxc的开口向上,因此,对于抛物线上的任意一点(x,y),当x 时,y随x的增大而减小;当x 时,y随x的增大而增大;当x ,y有最小值 ;若a0,抛物线yax2bxc的开口向下,因此,对于抛物线上的任意一点(x,y),当x ,y随x的增大而增大;当 时,y随x的增大而减小;当x 时,y有最大值 ;(3)抛物线yax2bxc与y轴的交点为(0,c);(4)在二次函数yax2bxc中,令y0可得到抛物线yax2bxc与x轴交点的情况:0时,抛物线yax2bxc与x轴没有公共点D0时,抛物线yax2bxc与x轴只有一个公共点,即为此抛物线的顶点 ;当Db24ac0,抛物线yax2bxc与x轴有两个不同的公共点,它们的坐标分别是 和 ,这两点的距离为 ;当D当4抛物线的平移抛物线ya(xh)2k与yax2形状相同,位置不同把抛物线yax2向上(下)、向左(右)平移,可以得到抛物线ya(xh)2k平移的方向、距离要根据h、k的值来决定初中数学知识点归纳(口诀)函数正比例函数的鉴别 判断正比例函数,检验当分两步走。 一量表示另一量, 有没有。 若有再去看取值,全体实数都需要。 区分正比例函数,衡量可分两步走。 一量表示另一量, 是与否。 若有还要看取值,全体实数都要有。 正比例函数的图象与性质 正比函数图直线,经过 和原点。 K正一三负二四,变化趋势记心间。 K正左低右边高,同大同小向爬山。 K负左高右边低,一大另小下山峦。 一次函数 一次函数图直线,经过 点。 K正左低右边高,越走越高向爬山。 K负左高右边低,越来越低很明显。 K称斜率b截距,截距为零变正函。 反比例函数 反比函数双曲线,经过 点。 K正一三负二四,两轴是它渐近线。 K正左高右边低,一三象限滑下山。 K负左低右边高,二四象限如爬山。 二次函数 二次方程零换y,二次函数便出现。 全体实数定义域,图像叫做抛物线。 抛物线有对称轴,两边单调正相反。 A定开口及大小,线轴交点叫顶点。 顶点非高即最低。上低下高很显眼。 如果要画抛物线,平移也可去描点, 提取配方定顶点,两条途径再挑选。 列表描点后连线,平移规律记心间。 左加右减括号内,号外上加下要减。 二次方程零换y,就得到二次函数。 图像叫做抛物线,定义域全体实数。 A定开口及大小,开口向上是正数。 绝对值大开口小,开口向下A负数。 抛物线有对称轴,增减特性可看图。 线轴交点叫顶点,顶点纵标最值出。 如果要画抛物线,描点平移两条路。 提取配方定顶点,平移描点皆成图。 列表描点后连线,三点大致定全图。 若要平移也不难,先画基础抛物线, 顶点移到新位置,开口大小随基础。2345678 数。二次函数可以表示为f(x)=ax2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。 一般地,自变量x和因变量y之间存在如下关系: 一般式:1:y=ax2+bx+c(a0,a、b、c为常数), 则称y为x的二次函数。顶点坐标(-b/2a,(4ac-b)/4a) (若给出抛物线上两点及另一个条件,通常可设一般式) 2.顶点式:y=a(x+m)2+k(a0,m0,k0) (两个式子实质一样,但初中课本上都是第一个式子)(若给出抛物线的顶点坐标或对称轴与最值,通常可设顶点式),顶点坐标为(-m,k)对称轴x=-m 3.交点式(与x轴):y=a(x-x)(x-x) (若给出抛物线与x轴的交点及对称轴与x轴的交点距离或其他一的条件,通常可设交点式) 重要概念:(a,b,c为常数,a0,且a决定函数的开口方向,a0时,开口方向向上,a0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。 二次函数表达式的右边通常为二次三项式。 x是自变量,y是x的二次函数x,x=-b(b-4ac)/2a 在平面直角坐标系中作出二次函数y=2x的平方的图像, 可以看出,二次函数的图像是一条永无止境的抛物线。不同的二次函数图像如果所画图形准确无误,那么二次函数将是由一般式平移得到的。 注意:草图要有 1本身图像,旁边注名函数。 2画出对称轴,并注明X=什么 3与X轴交点坐标,与Y轴交点坐标,顶点坐标。抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x = -b/2a。 对称轴与抛物线唯一的交点为抛物线的顶点P。 特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为P ( -b/2a ,(4ac-b2)/4a ) 当-b/2a=0时,P在y轴上;当= b2-4ac=0时,P在x轴上。 3.二次项系数a决定抛物线的开口方向和大小。 当a0时,抛物线向上开口;当a0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 4.一次项系数b和二次项系数a共同决定对称轴的位置。 当a与b同号时(即ab0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a0, 所以b/2a要小于0,所以a、b要异号 可简单记忆为左同右异,即当a与b同号时(即ab0),对称轴在y轴左;当a与b异号时 (即ab 0 ),对称轴在y轴右。 事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的 斜率k的值。可通过对二次函数求导得到。 5.常数项c决定抛物线与y轴交点。 抛物线与y轴交于(0,c) 6.抛物线与x轴交点个数 = b*2-4ac0时,抛物线与x轴有2个交点。 = b*2-4ac=0时,抛物线与x轴有1个交点。 = b2-4ac0时,抛物线与x轴没有交点。X的取值是虚数(x= -bb24ac 的值的相反数,乘上 虚数i,整个式子除以2a) 当a0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b/4a;在x|x-b/2a上是增函数;抛物线的开口向上;函数的值域是y|y4ac-b2/4a相反不变 当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax2+c(a0) 7.特殊值的形式 当x=1时 y=a+b+c 当x=-1时 y=a-b+c 当x=2时 y=4a+2b+c 当x=-2时 y=4a-2b+c 8.定义域:R 值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)(4ac-b2)/4a, 正无穷); t,正无穷) 奇偶性:偶函数 周期性:无 解析式: y=ax2+bx+c一般式 a0 a0,则抛物线开口朝上;a0,则抛物线开口朝下; 极值点:(-b/2a,(4ac-b2)/4a); =b2-4ac, 0,图象与x轴交于两点: (-b-/2a,0)和(-b+/2a,0); 0,图象与x轴交于一点: (-b/2a,0); 0,图象与x轴无交点; y=a(x-h)2+k顶点式 此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b2)/4a; y=a(x-x1)(x-x2)交点式(双根式)(a0) 对称轴X=(X1+X2)/2 当a0 且X(X1+X2)/2时,Y随X的增大而增大,当a0且X(X1+X2)/2时Y随X 的增大而减小 此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连用)。 焦点式是Y=A(X-X1)(X-X2) 知道两个x轴焦点和另一个点坐标设焦点式。两焦点X值就是相应X1 X2值。 特别地,二次函数(以下称函数)y=ax2+bx+c, 当y=0时,二次函数为关于x的一元二次方程(以下称方程),ax2+bx+c=0 此时,函数图像与x轴有无交点即方程有无实数根。 函数与x轴交点的横坐标即为方程的根。 1二次函数y=ax2;,y=a(x-h)2;,y=a(x-h)2+k,y=ax2+bx+c(各式中,a0)的图象形状相同,只是位置不同,它们的顶点坐标及对称轴如下表: 解析式 顶点坐标 对 称 轴 y=ax2 (0,0) x=0 y=ax2+K (0,K) x=0 y=a(x-h)2 (h,0) x=h y=a(x-h)2+k (h,k) x=h y=ax2+bx+c (-b/2a,4ac-b2/4a) x=-b/2a 当h0时,y=a(x-h)2;的图象可由抛物线y=ax2;向右平行移动h个单位得到, 当h0,k0时,将抛物线y=ax2;向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象; 当h0,k0时,将抛物线y=ax2;向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2-k的图象; 当h0时,将抛物线向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x+h)2+k的图象; 当h0,k0时,开口向上,当a0,当x -b/2a时,y随x的增大而减小;当x -b/2a时,y随x的增大而增大若a0,图象与x轴交于两点A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax2+bx+c=0 (a0)的两根这两点间的距离AB=|x-x| =/a(a绝对值分之根号下)另外,抛物线上任何一对对称点的距离可以由|2(-b/2a)A |(A为其中一点的横坐标) 当=0图象与x轴只有一个交点; 当0时,图象落在x轴的上方,x为任何实数时,都有y0;当a0时,图象落在x轴的下方,x为任何实数时,都有y0(a13时,y随x的增大而减小。而该函数自变量的范围为:0x30,所以两个范围应为0x13;13x30。将x=10代入,求函数值即可。由顶点解析式可知在第13分钟时接受能力为最强。解题过程如下: 解:(1)y=-0.1x2+2.6x+43=-0.1(x-13)2+59.9 所以,当0x13时,学生的接受能力逐步增强。 当13x30时,学生的接受能力逐步下降。 (2)当x=10时,y=-0.1(10-13)2+59.9=59。 第10分时,学生的接受能力为59。 (3)x=13时,y取得最大值, 所以,在第13分时,学生的接受能力最强。 3( 河北省)某商店经销一种销售成本为每千克40元的水产品据市场分析,若按每千克50元销售,一个月能售出500千克;销售单价每涨1元,月销售量就减少10千克针对这种水产品的销售情况,请解答以下问题: (1)当销售单价定为每千克55元时,计算月销售量和月销售利润; (2)设销售单价为每千克x元,月销售利润为y元,求y与x的函数关系式(不必写出x的取值范围); (3)商店想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应定为多少? 解:(1)当销售单价定为每千克55元时,月销售量为:500(5550)10=450(千克),所以月销售利润为:(5540)450=6750(元) (2)当销售单价定为每千克x元时,月销售量为:500(x50)10千克而每千克的销售利润是:(x40)元,所以月销售利润为:y=(x40)500(x50)10=(x40)(100010x)=10x2+1400x40000(元), y与x的函数解析式为:y =10x2+1400x40000 (3)要使月销售利润达到8000元,即y=8000,10x2+1400x40000=8000, 即:x2140x+4800=0, 解得:x1=60,x2=80 当销售单价定为每千克60元时,月销售量为:500(6050)10=400(千克),月销售成本为:40400=16000(元); 当销售单价定为每千克80元时,月销售量为:500(8050)10=200(千克),月销售单价成本为:40200=8000(元); 形如 ykx(k为常数且k0,x0,y0) 的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 如图,上面给出了k分别为正和负(2和-2)时的函数图像。 当K0时,反比例函数图像经过一,三象限,是减函数(即y随x的增大而减小) 当K0时,反比例函数图像经过二,四象限,是增函数(即y随x的增大而增大) 由于反比例函数的自变量和因变量都不能为0,所以图像只能无限向坐标轴靠近,无法和坐标轴相交。 知识点: 1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为| k |。 2.对于双曲线y k/x,若在分母上加减任意一个实数 (即 ykx(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)满意答案 好评率:100% 第九章 解直角三角形 重点解直角三角形 内容提要 一、三角函数 1定义:在RtABC中,C=Rt,则sinA= ;cosA= ;tgA= ;ctgA= . 2 特殊角的三角函数值: 0 30 45 60 90 sin cos tg / ctg / 3 互余两角的三角函数关系:sin(90-)=cos; 4 三角函数值随角度变化的关系 5查三角函数表 二、解直角三角形 1 定义:已知边和角(两个,其中必有一边)所有未知的边和角。 2 依据:边的关系: 角的关系:A+B=90 边角关系:三角函数的定义。 注意:尽量避免使用中间数据和除法。 三、对实际问题的处理 1 俯、仰角: 2方位角、象限角: 3坡度: 4在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。 四、应用举例(略) 第十章 圆 重点圆的重要性质;直线与圆、圆与圆的位置关系;与圆有关的角的定理;与圆有关的比例线段定理。 内容提要 一、圆的基本性质 1圆的定义(两种) 2有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。 3“三点定圆”定理 4垂径定理及其推论 5“等对等”定理及其推论 5 与圆有关的角:圆心角定义(等对等定理) 圆周角定义(圆周角定理,与圆心角的关系) 弦切角定义(弦切角定理) 二、直线和圆的位置关系 1.三种位置及判定与性质: 2.切线的性质(重点) 3.切线的判定定理(重点)。圆的切线的判定有 4切线长定理 三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切) 第一章 实数 重点 实数的有关概念及性质,实数的运算 内容提要 一、 重要概念 1数的分类及概念 数系表: 说明:“分类”的原则:1)相称(不重、不漏) 2)有标准 2非负数:正实数与零的统称。(表为:x0) 常见的非负数有: 性质:若干个非负数的和为0,则每个非负担数均为0。 3倒数: 定义及表示法 性质:A.a1/a(a1);B.1/a中,a0;C.0a1时1/a1;a1时,1/a1;D.积为1。 4相反数: 定义及表示法 性质:A.a0时,a-a;B.a与-a在数轴上的位置;C.和为0,商为-1。 5数轴:定义(“三要素”) 作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。 6奇数、偶数、质数、合数(正整数自然数) 定义及表示: 奇数:2n-1 偶数:2n(n为自然数) 7绝对值:定义(两种): 代数定义: 几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。 a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。 二、 实数的运算 1 运算法则(加、减、乘、除、乘方、开方) 2 运算定律(五个加法乘法交换律、结合律;乘法对加法的 分配律) 3 运算顺序:A.高级运算到低级运算;B.(同级运算)从“左” 到“右”(如5 5);C.(有括号时)由“小”到“中”到“大”。 三、 应用举例(略) 附:典型例题 1 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b =b-a. 2.已知:a-b=-2且abba+cb+c abacbc(c0) abacbc(cb,bcac ab,cda+cb+d. 5一元一次不等式的解、解一元一次不等式 6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集) 7应用举例(略) 第七章 相似形 重点相似三角形的判定和性质 内容提要 一、本章的两套定理 第一套(比例的有关性质): 涉及概念:第四比例项比例中项比的前项、后项,比的内项、外项黄金分割等。 第二套: 注意:定理中“对应”二字的含义; 平行相似(比例线段)平行。 二、相似三角形性质 1对应线段;2对应周长;3对应面积。 三、相关作图 作第四比例项;作比例中项。 四、证(解)题规律、辅助线 1“等积”变“比例”,“比例”找“相似”。 2找相似找不到,找中间比。方法:将等式左右两边的比表示出来。 3添加辅助平行线是获得成比例线段和相似三角形的重要途径。 4对

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论