




已阅读5页,还剩16页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
九年级(上)第 4 章 等可能条件下的概率 单元试卷 一、选择题(共 11 小题) 1( 2013福州)袋中有红球 4 个,白球若干个,它们只有颜色上的区别从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ) A 3 个 B不足 3 个 C 4 个 D 5 个或 5 个以上 2( 2015柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( ) A 25% B 50% C 75% D 85% 3( 2015泰安)如图,在方格纸中,随机选择标有序号 中的一个小正方形涂黑 ,与图中阴影部分构成轴对称图形的概率是( ) A B C D 4( 2015义乌市)在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,从中任意摸出一个球,则摸出白球的概率是( ) A B C D 5( 2015贵港)若在 “正三角形、平行四边形、菱形、正五边形、正六边形 ”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( ) A B C D 6( 2015台湾)怡君手上有 24 张卡片,其中 12 张卡片被画上 O 记号,另外 12 张卡片被画上 图表示怡君从手上拿出 6 张卡片放在桌面的情形,且她打算从手上剩下的卡片中抽出一张卡片若怡君手上剩下的每张卡片被抽出的机会相等,则她抽出 O 记号卡片的机率为何?( ) A B C D 7( 2015佛山)一个不透明的盒子中装有 6 个大小相同的乒乓球,其中 4 个是黄球, 2 个是白球从该盒子中任意摸出一个球,摸到黄球的概率是( ) A B C D 8( 2015威海)甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同甲袋中,红球个数是白球个数的 2 倍;乙袋中,红球个数是白球个数的 3 倍,将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( ) A B C D 9( 2015山西)某校举行春季运动会,需要在初一年级选取一名志愿者初一( 1)班、初一( 2)班、初一( 3)班各有 2 名同学报名参加现从这 6 名同学中随机选取一名志愿者,则被选中的这名同学恰好是初一( 3)班同学的概率是( ) A B C D 10( 2015河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数 3 相差 2 的概率是( ) A B C D 11( 2015遂宁)一个不透明的布袋中,放有 3 个白球, 5 个红球,它们除颜色外完全相同,从中随机摸取 1 个,摸到红球的概率是( ) A B C D 二、填空题(共 18 小题) 12( 2015梅州)一个学习兴趣小组有 4 名女生, 6 名男生,现要从这 10 名学生中选出一人担任组长,则女生当选组长的概率是 13( 2015重庆)从 2, 1, 0, 1, 2 这 5 个数中,随机抽取一个数记为 a, 则使关于 x 的不等式组 有解,且使关于 x 的一元一次方程 +1= 的解为负数的概率为 14( 2015丽水)有 6 张卡片,每张卡片上分别写有不同的从 1 到 6 的一个自然数从中任意抽出一张卡片,卡片上的数是 3 的倍数的概率是 15( 2015沈阳)在一个不透明的袋中装有 12 个红球和若干个黑球,每个球除颜色外都相同,任意摸 出一个球是黑球的概率为 ,那么袋中的黑球有 个 16( 2015甘孜州)将除颜色外其余均相同的 4 个红球和 2 个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为 17( 2015天津)不透明袋子中装有 9 个球,其中有 2 个红球、 3 个绿球和 4 个蓝球,这些球除颜色外无其他差别从袋子中随机取出 1 个球,则它是红球的概率是 18( 2015铜仁市)小明掷一枚均匀的骰子,骰子的六个面上分别刻 有 1, 2, 3, 4, 5, 6 点,得到的点数为奇数的概率是 19( 2015苏州)如图,转盘中 8 个扇形的面积都相等,任意转动转盘 1 次,当转盘停止转动时,指针指向大于 6 的数的概率为 20( 2015烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为 21( 2015黑龙江)在一个口袋中有 5 个除颜色外完全相同的小球,其中有 3 个黄球, 1 个黑球,1 个白球,从中随机摸出一个小球,则摸到黄球的概率是 22( 2015南宁)一个不透明的口袋中有 5 个完全相同的小球,把它们分别标号为 1, 2, 3, 4, 5,随机提取一个小球,则取出的小球标号是奇数的概率是 23( 2015邵阳)某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是 24( 2015包头)一个不透明的布袋里装有 5 个球, 其中 4 个红球和 1 个白球,它们除颜色外其余都相同,现将 n 个白球放入布袋,搅匀后,使摸出 1 个球是红球的概率为 ,则 n= 25( 2015长沙)一个不透明的袋子中只装有 3 个黑球, 2 个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别在看不到球的条件下,随机从袋中摸出 1 个球,则摸出白球的概率是 26( 2015厦门)不透明的袋子里装有 1 个红球, 1 个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出 红球的概率是 27( 2015成都)有 9 张卡片,分别写有 1 9 这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为 a,则使关于 x 的不等式组 有解的概率为 28( 2015上海)某校学生会提倡双休日到养老院参加服务活动,首次活动需要 7 位同学参加,现有包括小杰在内的 50 位同学报名,因此学生会将从这 50 位同学中随机抽取 7 位,小杰被抽到参加首次活动的概率是 29( 2013莆田)经过某个路口的汽 车,它可能继续直行或向右转,若两种可能性大小相同,则两辆汽车经过该路口全部继续直行的概率为 三、解答题(共 1 小题) 30( 2015南昌)在一个不透明的袋子中装有仅颜色不同的 10 个小球,其中红球 4 个,黑球 6 个 ( 1)先从袋子中取出 m( m 1)个红球,再从袋子中随机摸出 1 个球,将 “摸出黑球 ”记为事件 A,请完成下列表格: 事件 A 必然事件 随机事件 m 的值 ( 2)先从袋子中取出 m 个红球,再放入 m 个一样的黑球并摇匀,随机摸出 1 个黑球的概率等于 ,求 m 的值 参考答案与试题解析 一、选择题(共 11 小题) 1( 2013福州)袋中有红球 4 个,白球若干个,它们只有颜色上的区别从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( ) A 3 个 B不足 3 个 C 4 个 D 5 个或 5 个以上 考点: 可能性的大小 专题: 压轴题 分析: 根据取到白球的可能性较大可以判断出白球的数量大于红球的数量,从而得解 解答: 解: 袋中有红球 4 个,取到白球的可能性较大, 袋中的白球数量大于红球数量, 即袋中白球的个数可能是 5 个或 5 个以上 故选 D 点评: 本题考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等 2( 2015柳州)小张抛一枚质地均匀的硬币,出现正面朝上的可能性是( ) A 25% B 50% C 75% D 85% 考点: 可能性的大小 分析: 抛一枚质地均匀的硬币,有两种结果,正面朝上,每种结果等可能出现,从而可得出答案 解答: 解:抛一枚质地均匀的硬币, 有正面朝上、反面朝上两种结果,故正面朝上的概率 = 故选: B 点评: 本题主要考查了古典概率中的等可能事件的概率的求解,如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P( A) = 3( 2015泰安)如图,在方格纸中,随机选择标有序号 中的一个小正方形涂黑,与图中阴影部分构成轴对称图形的概率是( ) A BCD 考点: 概率公式;轴对称图形 分析: 由随机选择标有序号 中的一个小正方形涂黑,共有 5种等可能的结果,使与图中阴影部分构成轴对称图形的有 3 种情况,直接利用概率公式求解即可求得答案 解答: 解: 在方格纸中,随机选择标有序号 中的一个小正方形涂黑,共有5 种等可能的结果,使与图中阴影部分构成轴对称图形的有 , 3 种情况, 使与图中阴影部分构成轴对称图形的概率是: 35= 故选 C 点评: 此题考查了概率公式的应用注意用到的知识点为:概率 =所求情况数与总情况数之比也考查了轴对称图形的定义 4( 2015义乌市)在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,从中任意摸出一个球,则摸出白球的概率是( ) ABCD 考点: 概率公式 分析: 由在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球,直接利用概率公式求解即可求得答案 解答: 解: 在一个不透明的袋子中装有除颜色外其它均相同的 3 个红球和 2 个白球, 从中任意摸出一个球,则摸出白球的概率是: = 故选 B 点评: 此题考查了概率公式的应用用到的知识点为:概率 =所求情况数与总情况数之比 5( 2015贵港)若在 “正三角形、平行四边形、菱形、正五边形、正六边形 ”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是( ) ABCD 考点: 概率公式;中心对称图形 专题: 计算题 分析: 根据中心对称图形的定义得到平行四边形、菱形和正六边形是中心对称图形,于是利用概率公式可计算出抽到的图形属于中心对称图形的概率 解答: 解:这五种图形中,平行四边形、菱形和正六边形是中心对称图形, 所以这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率 = 故选 C 点评: 本题考查了概率公式:随机事件 A 的概率 P( A) =事件 A 可能出现的结果数除以所有可能出现的结果数也考查了中心对称图形 6( 2015台湾)怡君手上有 24 张卡片,其中 12 张卡片被画上 O 记号,另外 12 张卡片被画上 图表示怡君从手上拿出 6 张卡片放在桌面的情形,且她打算从手上剩下的卡片中抽出一张卡片若怡君手上剩下的每张卡片被抽出的机会相等,则她抽出 O 记号卡片的机率为何?( ) A B概率公式 CD 考点: 分析: 先求出剩下的卡片中记号为 O 的有 8 张,记号为 X 的有 10 张,再根据概率公式即可得出答案 解答: 解: 共有 24 张卡片, 剩下的卡片中记号为 O 的有 8 张,记号为 X 的有 10 张, 她抽出 O 记号卡片的机率为 = ; 故选 C 点评: 此题考查了概率公式,用到的知识点为:概率 =所求情况数与总情况数之比 7( 2015佛山)一个不透明的盒子中装有 6 个大小相同的乒乓球,其中 4 个是黄球, 2 个是白球从该盒子中任意摸出一个球,摸到黄球的概率是( ) ABCD 考点: 概率公式 分析: 利 用黄球的个数除以球的总个数即可得到答案 解答: 解: 盒子中装有 6 个大小相同的乒乓球,其中 4 个是黄球, 摸到黄球的概率是 = , 故选: C 点评: 此题主要考查了概率公式的应用,关键是掌握概率公式:所求情况数与总情况数之比 8( 2015威海)甲、乙两布袋装有红、白两种小球,两袋装球总数量相同,两种小球仅颜色不同甲袋中,红球个数是白球个数的 2 倍;乙袋中,红球个数是白球个数的 3 倍, 将乙袋中的球全部倒入甲袋,随机从甲袋中摸出一个球,摸出红球的概率是( ) ABCD 考点: 概率公式 分析: 首先根据每个袋子中球的倍数设出每个袋子中球的个数,然后利用概率公式求解即可 解答: 解: 甲袋中,红球个数是白球个数的 2 倍, 设白球为 4x,则红球为 8x, 两种球共有 12x 个, 乙袋中,红球个数是白球个数的 3 倍,且两袋中球的数量相同, 红球为 9x,白球为 3x, 混合后摸出红球的概率为: = , 故选 C 点评: 此题考查了概率公式的应用注意用到的知识点为:概率 =所求情况数与总情况数之比 9( 2015山西)某校举行春季运动会,需要在初一年级选取一名志愿者初一( 1)班、初一( 2)班、初一( 3)班各有 2 名同学报名参加现从这 6 名同 学中随机选取一名志愿者,则被选中的这名同学恰好是初一( 3)班同学的概率是( ) ABCD 考点: 概率公式 分析: 用初一 3 班的学生数除以所有报名学生数的和即可求得答案 解答: 解: 共有 6 名同学,初一 3 班有 2 人, P(初一 3 班) = = , 故选 B 点评: 此题考查了概率公式的应用注意用到的知识点为:概率 =所求情况数与总情况数之比 10( 2015河北)将一质地均匀的正方体骰子掷一次,观察向上一面的点数,与点数 3 相差 2 的概率是( ) ABCD 考点: 概率公式 分析: 由一枚质地均匀的正方体骰子的六个面上分别刻有 1 到 6 的点数,掷一次这枚骰子,向上的一面的点数为与点数 3 相差 2 的有 2 种情况,直接利用概率公式求解即可求得答案 解答: 解: 一枚质地均匀的正方体骰子的六个面上分别刻有 1 到 6 的点数,掷一次这枚骰子,向上的一面的点数为点数 3 相差 2 的有 2 种情况, 掷一次这枚骰子,向上的一面的点数为点数 3 相差 2 的概率是: = 故选 B 点评: 此题考查了概率公式的应用注意用到的知识点为:概率 =所求情况数与总情况数之比 11( 2015遂宁)一个不透明的布袋中,放有 3 个白球, 5 个红球,它们除颜色外完全相同,从中随机摸取 1 个,摸到红球的概率是( ) ABCD 考点: 概率公式 分析: 根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率 解答: 解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的 3 个白球和 5 个红球, 从中随机摸出一个,则摸到红球的概率是 = 故选 A 点评: 本题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件A 出现 m 种结果,那么事件 A 的概率 P( A) = 二、填空题(共 18 小题) 12( 2015梅州)一个学习兴趣小组有 4 名女生, 6 名男生,现要从这 10 名学生中选出一人担任组长,则女生当选组长的概率是 考点: 概率公式 分析: 随机事件 A 的概率 P( A) =事件 A 可能出现的结果数 所有可能出现的结果数,据此用女生的人数除以这个学习兴趣小组的总人数,求出女生当选组长的概率是多少即可 解答: 解:女生当选组长的概率是: 410= 故答案为: 点评: 此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:( 1)随机事件 ( A) =事件 A 可能出现的结果数 所有可能出现的结果数( 2) P(必然事件) =1( 3)P(不可能事件) =0 13( 2015重庆)从 2, 1, 0, 1, 2 这 5 个数中,随机抽取一个数记为 a,则使关于 x 的不等式组 有解,且使关于 x 的一元一次方程 +1= 的解为负数的概率为 考点: 概率公式;一元一次方程的解;解一元一次不等式组 分析: 分别求得使关于 x 的不等式组 有解,且使关于 x 的一元一次方程+1= 的解为负数的 a 的值满足的条件,然后利用概率公式求解即可 解答: 解: 使关于 x 的不等式组 有解的 a 满足的条件是 a , 使关于 x 的一元一次方程 +1= 的解为负数的 a 的 a , 使关于 x 的不等式组 有解,且使关于 x 的一元一次方程 +1= 的解为负数的 a 的值为 1, 0, 1,三个数, 使关于 x 的不等式组 有解,且使关于 x 的一元一次方程 +1= 的解为负数的概率为 , 故答案为: 点评: 本题考查了概率公式、一元一次方程的解及解一元一次不等式组的知识,解题的关键是首先确定满足条件的 a 的值,难度不大 14( 2015丽水)有 6 张卡片,每张卡片上分别写有不同的从 1 到 6 的一个自然数从中任意抽出一张卡片,卡片上的数是 3 的倍数的概率是 考点: 概率公式 分析: 分别求出从 1 到 6 的数中 3 的倍数的个数,再根据概率公式解答即可 解答: 解: 从 1 到 6 的数中 3 的倍数有 3, 6,共 2 个, 从中任取一张卡片, P(卡片上的数是 3 的倍数) = = 故答案为: 点评: 考查了概率公式,用到的知识点为:概率 =所求情况数与总情况数之比 15( 2015沈阳)在一个不透明的袋中装有 12 个红球和若干个黑球,每个球除颜色外都相同,任意摸出一个球是黑球的概率为 ,那么袋中的黑球有 4 个 考点: 概率公式 分析: 首先设袋中的黑球有 x 个,根据题意得: = ,解此分式方程即可求得答案 解答: 解:设袋中的黑球有 x 个, 根据题意得: = , 解得: x=4, 经检验: x=4 是原分式方程的解 即袋中的黑球有 4 个 故答案为: 4 点评: 此题考查了概率公式的应用用到的知识点为:概率 =所求情况数与总情况数之比 16( 2015甘孜州)将除颜色外其余均相同的 4 个红球和 2 个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,则摸出红球的概率为 考点: 概率公式 分析: 由将除颜色外其余均相同的 4 个红球和 2 个白球放入一个不透明足够大的盒子内,摇匀后随机摸出一球,直接利用概率公式求解即可求得答案 解答: 解: 除颜色外其余均相同的 4 个红球和 2 个白球, 摸出红球的概率为: = 故答案为: 点评: 此题考查了概率公式的应用用到的知识点为:概率 =所求情况数与总情况数之比 17( 2015天津)不透明袋子中装有 9 个球,其中有 2 个红球、 3 个绿球和 4 个蓝球,这些球除颜色外无其他差别从袋子中随机取出 1 个球,则它是红球的概率是 考点: 概率公式 分析: 根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率 解答: 解: 共 4+3+2=9 个球,有 2 个红球, 从袋子中随机摸出一个球,它是红球的概率为 , 故答案为: 点评: 本题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 m 种结果,那么事件 A 的概率 P( A) = 18( 2015铜仁市)小明掷一枚均匀的骰子,骰子的六个面上分别刻有 1, 2, 3, 4, 5, 6 点,得到的点数为奇数的概率是 考点: 概率公式 分析: 根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率 解答: 解:根据题意知,掷一次骰子 6 个可能结果,而奇数有 3 个,所以掷到上面为奇数的概率为 故答案为: 点评: 本题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 m 种结果,那么事件 A 的概率 P( A) = 19( 2015苏州)如图,转盘中 8 个扇形的面积都相等,任意转动转盘 1 次,当转盘停止转动时,指针指向大于 6 的数的概率为 考点: 概率公 式 分析: 根据概率的求法,找准两点: 全部情况的总数; 符合条件的情况数目;二者的比值就是其发生的概率 解答: 解: 共 8 个数,大于 6 的有 2 个, P(大于 6) = = , 故答案为: 点评: 本题考查概率的求法:如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 m 种结果,那么事件 A 的概率 P( A) = 20( 2015烟台)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同,将它们背面朝上洗匀后,从中抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为 考点: 概率公式;一次函数的性质;正比例函数的性质;反比例函数的性质;二次函数的图象 分析: 用不经过第四象限的个数除以总个数即可确定答案 解答: 解: 4 张卡片中只有第 2 个 经过第四象限, 取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为 , 故答案为: 点评: 本题考查的是概率的求法如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P( A) = 21( 2015黑龙江)在一个口袋中有 5 个除颜色外完全相同的小球,其中有 3 个黄球, 1 个黑球,1 个白球,从中随 机摸出一个小球,则摸到黄球的概率是 考点: 概率公式 分析: 利用黄球的个数 球的总个数可得黄球的概率 解答: 解: 口袋中有 5 个球,其中有 3 个黄球, 摸到黄球的概率是: 故答案为: 点评: 此题主要考查了概率公式,关键是掌握概率 =所求情况数与总情况数之比 22( 2015南宁)一个不透明的口袋中有 5 个完全相同 的小球,把它们分别标号为 1, 2, 3, 4, 5,随机提取一个小球,则取出的小球标号是奇数的概率是 考点: 概率公式 分析: 首先判断出 1, 2, 3, 4, 5 中的奇数有哪些;然后根据概率公式,用奇数的数量除以 5,求出取出的小球标号是奇数的概率是多少即可 解答: 解: 1, 2, 3, 4, 5 中的奇数有 3 个: 1、 3、 5, 取出的小球标号是奇数的概率是: 35= 故答案为: 点评: 此题主要考查了概率公式的应用,要熟练掌握,解答此题的关键是要明确:随机事件 A 的概率 P( A) =事件 A 可能出现的结果数 所有可能出现的结果数 23( 2015邵阳)某同学遇到一道不会做的选择题,在四个选项中有且只有一个是正确的,则他选对的概率是 考点: 概率公式 分析: 用正确的个数除以选项的总数即可求得选对的概率 解答: 解: 四个选项中有且只有一个是正确的, 他选对的概率是 , 故答案为: 点评: 本题考查的是概率的求法如果一个事件有 n 种可能,而且这些事件的可能性相同,其中事件 A 出现 m 种结果,那么事件 A 的概率 P( A) = 24( 2015包头)一个不透明的布袋里装有 5 个球,其中 4 个红球和 1 个白球,它们除颜色外其余都相同,现将 n 个白球放入布袋,搅匀后,使摸出 1 个球是红球的概率为 ,则 n= 1 考点: 概率公式 分析: 由一个不透明的布袋里装有 5 个球,其中 4 个红球和 1 个白球,它们除颜色外其余都相同,现将 n 个白球放入布袋,搅匀后,使摸出 1 个球是红球的概率为 ,即可得方程: = ,解此分式方程即可求得答案 解答: 解:根据题意得: = , 解得: n=1, 经检验: n=1 是原分式方程的解 故答案为: 1 点评: 此题考查了概率公式的应用用到的知识点为:概率 =所求情况数与总情况数之比 25( 2015长沙)一个不透明的袋子中只装有 3 个黑球, 2 个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别在看不到球的条件下,随机从袋中摸出 1 个球,则摸出白球的概率是 考点: 概率公式 分析: 由一个不透明的袋 子中只装有 3 个黑球, 2 个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,直接利用概率公式求解即可求得答案 解答: 解: 一个不透明的袋子中只装有 3 个黑球, 2 个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别, 随机从袋中摸出 1 个球,则摸出白球的概率是: = 故答案为: 点评: 此题考查了概率公式的应用 用到的知识点为:概率 =所求情况数与总情况数之比 26( 2015厦门)不透明的袋子里装有 1 个红球, 1 个白球,这些球除颜色外无其他差别,从袋子中随机摸出一个球,则摸出红球的概率是 考点: 概率公式 分析: 用红球的数量除以球的总数量即可求得摸到红球的概率 解答: 解: 共 2 个球,有 1 个红球, P(摸出红球) = , 故答案为: 点评: 此题考查了概率公式的应用注意用到的知识点为:概率 =所求情况数与总情况数之比 27( 2015成都)有 9 张卡片,分别写有 1 9 这九个数字,将它们背面朝上洗匀后,任意抽取一张,记卡片上的数字为 a,则使关于 x 的不等式组 有解的概率为 考点: 概率公式;解一元一次不等式组 分析: 由关于 x 的不等式组 有解,可 求得 a 5,然后利用概率公式求解即可求得答案 解答: 解: , 由 得:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论