外文翻译-南沟门常态混凝土重力坝及溢流坝段设计_第1页
外文翻译-南沟门常态混凝土重力坝及溢流坝段设计_第2页
外文翻译-南沟门常态混凝土重力坝及溢流坝段设计_第3页
外文翻译-南沟门常态混凝土重力坝及溢流坝段设计_第4页
外文翻译-南沟门常态混凝土重力坝及溢流坝段设计_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

毕业设计(论文)外文翻译题目南沟门常态混凝土重力坝及溢流坝段设计专业水利水电工程班级工115班学生指导教师2015年NUMERICALCOMPUTATIONOFSTRUCTURESWITHQUASIBRITTLEMATERIELUNDERDYNAMICLOADINGCASESTUDYOFCONCRETEGRAVITYDAMABSTRACTTHEPRESENTPAPERDEALSWITHANUMERICALCOMPUTATIONUSINGFINITEELEMENTMETHODFORCONCRETESTRUCTURESSUBJECTEDTODYNAMICLOADS,USUALLYOFSEISMICNATURETHECONSEQUENCESOFWHICHAREOFTENDEVASTATINGINTHEGENERALEQUATIONOFDYNAMIC,ALAWOFCONCRETEMATERIALBEHAVIORTAKINGINTOACCOUNTMODELSBASEDONTHEDAMAGEMECHANICSHASBEENIMPLEMENTEDFROMAPHENOMENOLOGICALVIEWPOINT,THECHOSENBEHAVIORMODELTAKESINTOACCOUNTTHEDAMAGECAUSEDBYTHEOPENINGOFMICROCRACKSFORNUMERICALAPPLICATION,TWODIMENSIONALSEISMICANALYSISOFKOYNAGRAVITYDAMISPERFORMEDBYUSINGTHE1967KOYNAEARTHQUAKERECORDSTHEEFFECTSOFDAMAGEONEARTHQUAKERESPONSEOFTHECONCRETEGRAVITYDAMARESTUDIED1INTRODUCTIONTHESIMULATIONOFNONLINEARPROBLEMSOFDAMAGEANDFRACTUREPROCESSESFORQUASIBRITTLEMATERIALS,PARTICULARLYCONCRETE,ISTHESUBJECTOFRESEARCHSTUDIESINTHEFIELDOFCIVILENGINEERINGINTHEGOALTOSERVEFORVULNERABILITYSTUDIESLEMAITREANDMAZARS,1982LEMAITREANDCHABOCHE,1985THEPHENOMENATAKINGPARTINTHESEPROCESSESAREOFTENCOMPLEXAND,EVENINSIMPLECASES,THEANALYTICALRESOLUTIONOFTHEPROBLEMSTURNSOUTTOBE,FORTHELEAST,DIFFICULTTOSIMULATECOMPLEXSTRUCTURESSUBJECTEDTOSTATICAND/ORDYNAMICLOADS,ITISNECESSARYTOKNOWTHEBEHAVIOROFTHEMATERIALCONCRETEISCONSIDEREDASTHEMOSTUSEDMATERIALINTHEDESIGNOFSTRUCTURESWHICHMAYOCCASIONALLYBEEXPOSEDTOINTENSEDYNAMICLOADING,WHETHEROFACCIDENTALORINTENTIONALNATUREITBELONGSTOACLASSOFHETEROGENEOUSMATERIALSWITHQUITECOMPLEXNONLINEARBEHAVIORITISAQUASIBRITTLEMATERIALWITHATENSILESTRENGTHSIGNIFICANTLYLOWCOMPAREDTOTHECOMPRESSIONONENUMEROUSEXPERIMENTALTESTSSHOWINGTHEASPECTSOFTHEBEHAVIOROFTHISMATERIALEXISTSINTHELITERATURE,SUCHASTHEIMPACTTESTINGONCONCRETEATHIGHSPEEDKLEPACZKOANDBRARA,2001HERVANDGATUINGT,2002HENTZETAL,2004ORCYCLICLOADINGTENSIONCOMPRESSIONEXPERIMENTALTESTSDUB1994LABORDERIE1991THESEWORKSAIMSTOMODELTHEMACROSCOPICBEHAVIORANDPREDICTDAMAGEOFTHEMATERIALAMONGTHESEMODELS,THEJMAZARSMODELWHOSEPRINCIPLEISBASEDONDAMAGEMECHANICSWHICHISATHEORYDESCRIBINGTHEPROGRESSIVEREDUCTIONOFTHEMECHANICALPROPERTIESOFAMATERIALDUETOINITIATION,GROWTHANDCOALESCENCEOFMICROSCOPICCRACKSTHESEINTERNALCHANGESLEADTOTHEDEGRADATIONOFMECHANICALPROPERTIESOFTHEMATERIALTHEMODELTAKESINTOACCOUNTTHEASYMMETRYOFCONCRETEBEHAVIORANDITCONSIDERSTHECRACKINGINTENSIONANDCOMPRESSIONFAILURETHISISAMODELTHATISGENERALLYUSEDFORSTATICORPSEUDOSTATICSYSTEMSTHEREGULATORYTECHNICALDOCUMENTSFORREASONSOFSTRENGTHANDSAFETYREQUIRERIGOROUSLYTHATTHESTRUCTURESOFCONCRETEORREINFORCEDCONCRETETOBESIZEDUNDERDYNAMICLOADSESPECIALLYSEISMICTYPESEVERALSTUDIESHAVEBEENUNDERTAKENINTHISDIRECTIONTOCONSIDERSTRUCTURESOFDAMAGEDCONCRETESUBJECTEDTOSEISMICLOADSCALAYIRANDKARATON2005OMIDIETAL2012DAVENNEETAL2003WECONSIDERINTHISPAPERADAMSTRUCTUREDESIGNEDWITHCONCRETESUBJECTEDTODYNAMICLOADINGOFTHESEISMICTYPEFORDYNAMICINPUT,THETRANSVERSEANDVERTICALACCELERATIONCOMPONENTSOF11DECEMBER1967KOYNAEARTHQUAKEARESELECTEDWEWILLCONSIDERTHEHYDROSTATICEFFECTSOFTHEBASINPERSQUAREMETEROFSURFACEAPPLIEDTOTHEDAMWALL,BUTHYDRODYNAMICEFFECTSARENOTTAKENINTOCONSIDERATIONTHEEFFECTOFTHEDAMPINGCOEFFICIENTISTAKENINTOACCOUNTINTHECALCULATIONSTHEMATERIALISBASEDONTHEISOTROPICMODELDEVELOPEDBYJMAZARS1984INLOCALAPPROACHITISANEXPLICITDAMAGEMODELTHATCANACCURATELYDESCRIBETHEBEHAVIORINTENSIONANDCOMPRESSIONITALSOALLOWSREPRODUCINGTHEDAMAGEOFTENSION,COMPRESSIONANDDECREASEOFSTIFFNESSTHISMODELHASBEENIMPLEMENTEDINFINITEELEMENTPROGRAMWRITTENINFORTRAN90LANGUAGE,DESIGNEDTODEALSPECIFICALLYWITHNONLINEARMATERIALMODELINGTHEPROGRAMISDESIGNEDTOSOLVETHEGENERALEQUATIONOFDYNAMIC,CONSEQUENTLYALLOWINGUSTOCALCULATETHEDISPLACEMENTSATNODES,STRAINS,STRESSESANDDAMAGEATTHEGAUSSINTEGRATIONPOINTSTIMEINTEGRATIONSCHEMESCALLEDEXPLICITAREADOPTEDINNUMERICALSOLUTIONOFDYNAMICEQUILIBRIUMEQUATIONSFORDAMSTRUCTUREWITHSMALLTIMESTEPINPARTICULARWEADOPTACENTRALDIFFERENCEMETHODITISBASEDONAPPROXIMATIONOFVELOCITIESANDACCELERATIONSWITHQUOTIENTSOFFINITEDIFFERENCEOFKNOWNVALUESOFDISPLACEMENTSWITHREGULARTIMESTEPTHISMETHODISKNOWNCONDITIONALLYSTABLE,WITHAVERYSMALLTIMEINTERVALWEADOPTINTHISWORKTHEFINITEELEMENTMETHOD,THISMETHODISBASEDONACONTINUOUSDESCRIPTIONOFMATTER,ITCANBEAPPLIEDTONUMERICALSIMULATIONOFTHEDEGRADATIONOFQUASIBRITTLEMATERIALSFORTREATMENTOFLINEARANDNONLINEARPROBLEMS1DYNAMICEQUILIBRIUMEQUATIONSFORDYNAMICEQUILIBRIUMOFABODYINMOTION,THEEQUATIONOFMOTIONATTIMESTATIONTNISGIVENASTHEFOLLOWINGEXPRESSION1OWENANDHINTON1986MUCUPNFNWHEREMANDCARETHEGLOBALMASSANDDAMPINGMATRICESRESPECTIVELY,1PNISTHEGLOBALVECTOROFINTERNALRESISTINGNODALFORCES,FNISTHEVECTOROFCONSISTENTNODALFORCESFORTHEAPPLIEDBODYANDSURFACESTRACTIONFORCESGROUPEDTOGETHER,THEBODYFORCETERMMUGDUETOSEISMICEXCITATION,ISINCLUDEDINTHEBODYFORCESWHICHARETAKENINTOACCOUNTINFN,UNISTHEGLOBALVECTOROFNODALACCELERATIONSANDUNISTHEGLOBALVECTOROFNODALVELOCITIESEQUATIONOFMOTION1CANBEREWRITTENBYUSINGCENTRALDIFFERENCEEQUATIONASFOLLOWING2T1TUN1M2CT2PFN2MUNM2CUN12INORDERTOSOLVETHEEQUATION2EXPLICITLY,THEMASSMATRIXMANDTHEDAMPINGMATRIXCARETRANSFORMEDINDIAGONALMATRICESUNDERTHESEASSUMPTIONS,EQUATION2CANBEREWRITTENASASCALAREQUATION3OWENANDHINTON1986PAULTRE2005T2PF2MUMCUININIIINTIIIIIN1U2IN1TMIIII23THESTABILITYOFEQUATION3ISLINKEDTOTAVERYSMALLTIMEINTERVALTHEINTERNALRESISTINGFORCESUSINGINTHENUMERICALPROGRAMISGIVENBYTHEFOLLOWINGEXPRESSION4,PINBITNDWHEREANDBIARETHEEFFECTIVESTRESSANDTHEGLOBALSTRAINDISPLACEMENTMATRIX2CONSTITUTIVEMODELINTHEPRESENTWORKWEAREGOINGTOUSETHELOCALAPPROACHOFMAZARSSMODELITISBASEDONTHECONCEPTOFEFFECTIVESTRESSDEVELOPEDBYKACHANOV1958THENOTIONOFEFFECTIVESTRESSALLOWSUSTODISTINGUISHBETWEENANORIGINALMATERIALANDADAMAGEDONETHROUGHASCALARVARIABLEDKNOWINGTHATTHECONDITION0D1ISREPRESENTATIVEOFTHESTATEOFDEGRADATIONOFTHEMATERIALFORD0THEMATERIALISCONSIDEREDUNDAMAGED,FORD1THEMATERIALCOMPLETELYDAMAGEDTHEEXPRESSIONOFTHEEFFECTIVESTRESSISGIVENBYTHEFOLLOWINGFORMULA1D5CRACKSINQUASIBRITTLEMATERIALSAPPEARMAINLYWHENTHEMATERIALISINTENSIONTHEMAZARSSMODELTHUSCONSIDERSONLYPOSITIVEPRINCIPALSTRAINSTHISCHOICEISTHUSWELLSUITEDFORQUASIBRITTLEMATERIALSSUCHASFORMORTARANDCONCRETETHEEXPRESSIONOFTHEEQUIVALENTSTRAINWITHRESPECTTOMAINPOSITIVESTRAINSISGIVENBY6WHEREII2ANDIDENOTETHEMAINSTRAINCOMPONENTS1I321THRESHOLDFUNCTIONADAMAGELOADINGFUNCTIONF,D,DEPENDINGONDAMAGEVARIABLE,ISINTRODUCEDTHISDAMAGETHRESHOLDFUNCTIONDEFINESTHEDOMAINWHERETHEBEHAVIORISREVERSIBLE,ASLONGASF,D0,THEDAMAGEDOESNOTINCREASESO,FORAGIVENSTATEOFDAMAGE,THELOADINGFUNCTIONISF,DD7WHEREDISTHEVARIABLERELATEDTOTHEHISTORYOFTHEDAMAGECALLEDEQUIVALENTSTRAINANDDEPENDSONMAINSTRAINSIGIVENBYTHEEXPRESSION6,SUCHAS0IF0ANDIFI0DAMAGEDGROWSWHENTHEEQUIVALENTSTRAINREACHESATHRESHOLDDINITIALIZEDAT0DDIFF,DD0,THEN8KDDAMAGEDEFINEDBYMAZARSISSPLITINTOTWOPARTSDTDTCDC9THEPARAMETERISREPRESENTATIVEOFSHEAREXPERIMENTSITISUSUALLYCONSIDEREDASCONSTANT105PIEROTETAL2007DTANDDCAREDAMAGEVARIABLESINTENSIONANDCOMPRESSIONRESPECTIVELYTHEEVOLUTIONOFDAMAGEISPROVIDEDINANINTEGRATEDFORM,ASAFUNCTIONOFTHEVARIABLE1AAD0T,CT,CDT,C1EXPBT,CD103DAMAGERESPONSEOFKOYNADAMTHEKOYNACONCRETEGRAVITYDAM,103MINHEIGHTAND702MINWIDTHSHOWNINFIG1,ISLOCATEDONTHEKOYNARIVERINTHEWESTOFTHEINDIANPENINSULAIN1967,A65MAGNITUDEEARTHQUAKESHOOKTHEREGIONWITHMAXIMUMACCELERATIONMEASUREDATTHEFOUNDATIONGALLERYOF049AND034GINHORIZONTALDIRECTIONNORMALTOTHEDAMAXISANDINTHEVERTICALONE,RESPECTIVELYTHETIMEHISTORIESRECORDSOFTHEKOYNAEARTHQUAKEARESHOWNINFIG2SEVEREDAMAGEWASFOUNDINTHEFORMOFHORIZONTALCRACKINGOBSERVEDONBOTHTHEUPSTREAMANDDOWNSTREAMFACESOFTHEUPPERPARTOFDAMMONOLITHSINTHISPAPER,THENONLINEARDYNAMICANALYSISOFKOYNADAMISPERFORMEDUSINGTHECONCRETEMODELWITHISOTROPICDAMAGEINLOCALAPPROACHWENOTETHATTHEDAMRESERVOIRINTERACTIONISNOTCONSIDEREDTHEMESHOFTHEDAMSECTIONISSHOWNINFIG2BNODEN313ISSELECTEDTOREPRESENTTHETIMEHISTORYGRAPHSOFVERTICALANDHORIZONTALMOVEMENTATTHEDAMCRESTTHETHREEELEMENTINTEGRATIONPOINTSP807,P811,P815ARESELECTEDTOREPRESENTTHETIMEHISTORYGRAPHOFDAMAGEFIG1AGEOMETRICPROPRIETIESBMESHOFTHEDAMTHEMATERIALPROPERTIESUSEDINTHISSTUDYAREASFOLLOWINTHETABLE1TABLE1MATERIALPROPERTIESELASTICMODULUSPOISSONSRATIODENSITYTENSILESTRENGTHD0ATBTACBCTHECRITICALVISCOUSDAMPINGCOEFFICIENTUSEDINTHISSTUDYCANTAKETHREEVALUESESTIMATEDAT3,5AND7INTEGRATIONTIMESTEPISTAKENASEQUALTO0001STHEDYNAMICEXCITATIONISBYACCELEROGRAMSWHOSEHORIZONTALANDVERTICALCOMPONENTSARETHETIMEHISTORIESORRECORDSOFTHEKOYNAEARTHQUAKESHOWNINFIG2THEEFFECTSCAUSEDBYTHEEARTHQUAKESUCHASDISPLACEMENTS,STRAINS,STRESSESANDDAMAGETOTHEGRAVITYDAMSTRUCTUREARESUMMARIZEDINGRAPHSTHATAREDISCUSSEDANDCOMPAREDTORESULTSOBTAINEDINTHELITERATUREFIG2THEKOYNAACCELEROGRAMSAVERTICALCOMPONENTBHORIZONTALCOMPONENTFIGURE3SHOWTHETIMEHISTORYGRAPHSOFTHEVERTICALANDHORIZONTALDISPLACEMENTSOFTHENODALPOINT313LOCATEDATTHECRESTOFTHEDAMFIG3TIMEHISTORYGRAPHSOFTHEVERTICALANDHORIZONTALDISPLACEMENTSOFTHENODALPOINT313ATTHEDAMCRESTAVERTICALDISPLACEMENTBHORIZONTALDISPLACEMENT1,00,80,60,40,20,03,353,403,453,503,553,603,65TIMESECFIG4CUMULATEDDAMAGERECORDSATINTEGRATIONPOINTS815,811AND8074DISCUSSIONOFRESULTSINTHISPART,WEWILLREPORTTHEEFFECTSOFTHECONCRETEDAMAGEONTHESEISMICRESPONSEOFTHEGRAVITYDAMTHEVALUEOFTHEDAMPINGRATIOIS5FORTHESOLUTIONSOFTHISCALCULATIONEXAMPLEFIG3SHOWTHETIMEHISTORYGRAPHSOFTHEVERTICALANDHORIZONTALDISPLACEMENTSOFTHENODALPOINT313LOCATEDATTHECRESTOFTHEDAMWENOTETHATTHEDISPLACEMENTSARERELATIVELYLOWDURINGTHEFIRSTTWOSECONDSBECAUSEOFLOWTHEAMPLITUDESOFTHEEXCITATIONSTHEDISPLACEMENTSREACHTHEIRMAXIMUMAT3SAND47S,20MMWASRECORDEDAT462S,THEMAXIMUMDISPLACEMENTVALUEDOESNOTCORRESPONDTOTHEMAXIMUMAMPLITUDEOFTHEEXCITEMENTTHATISRECORDEDAT365STHENODALDISPLACEMENTSDECREASEAFTER5STHEREISNODAMAGEDURINGMOVEMENTWHERETHEAMPLITUDEISRELATIVELYLOWDAMAGEWEREOBSERVEDSEEFIG4INTHEDAMAFTER353SATTHEINTEGRATIONPOINT815OFTHEELEMENT204,THENFROM354SATINTEGRATIONPOINT811OFTHEELEMENT203ANDFINALLY,FROM354SATGAUSSPOINT807OFTHEELEMENT202ITMAYBENOTEDTHATTHEEVOLUTIONOFTHEDAMAGEISMAINLYCONCENTRATEDINTHETIMEINTERVALWHERETHEMAXIMUMVALUESOFPOSITIVEANDNEGATIVEDISPLACEMENTSOCCURTHERESULTSOBTAINEDINOURSTUDYCOMPAREDTOTHOSEOFREFERENCESCALAYIRANDKARATON2005JIANWENETAL2011ARERELATIVELYSATISFACTORY5CONCLUSIONTHEAIMOFTHISSTUDYIS,FIRSTLYTOHAVETHERESPONSEOFGRAVITYDAMSUBJECTEDTOSEISMICLOADINGASATIMEHISTORYOFTHEDISPLACEMENTS,STRAINSANDSTRESSESSECONDLYTOREPRESENTTHETIMEHISTORYOFDAMAGEEVOLUTIONINTHEINTEGRATIONPOINTSANDTODEDUCETHEAREASLIKELYTOBEDAMAGEDFIRSTLYANDHOWDOTHEYDEVELOPINTHESTRUCTURETHECHOICEOFTHEMETHODISRELATEDTOTHEVERYSMALLTIMEINTERVALCONSIDEREDTHECHOICEOFKOYNACONCRETEGRAVITYDAMISDUETOTHEFACTTHATMANYSTUDIESHAVEBEENDONEONTHISSTRUCTUREWHICHEXPERIENCEDADEVASTATINGEARTHQUAKEIN1967THEEARTHQUAKERECORDSAREINTHEFORMOFACCELEROGRAMSWITHHORIZONTALANDVERTICALCOMPONENTSWHICHAREUSEDASDYNAMICLOADSTHEEFFECTOFTHEDAMPINGCOEFFICIENTISOBVIOUSLYTAKENINTOACCOUNTHYDRODYNAMICEFFECTSARENOTCONSIDEREDINTHISSTUDYREFERENCESCALAYIR,Y,KARATON,M,2005ACONTINUUMDAMAGECONCRETEMODELFOREARTHQUAKEANALYSISOFCONCRETEGRAVITYDAMRESERVOIRSYSTEMSSOILDYNAMICSANDEARTHQUAKEENGINEERING252005857869DAVENNEL,RAGUENEAUF,MAZARSJ,IBRAHIMBEGOVICA,2003EFFICIENTAPPROACHESTOFINITEELEMENTANALYSISINEARTHQUAKEENGINEERINGCOMPUTERSANDSTRUCTURES81200312231239DUBJF,1994MODLISATIONSIMPLIFIEETCOMPORTEMENTVISCOENDOMMAGEABLEDESSTRUCTURESENBTON,PHDTHESIS,UNIVERSITYOFPARIS6HENTZS,DAUDEVILLEL,DONZFV,2004DISCRETEELEMENTMODELLINGOFCONCRETESUBMITTEDTODYNAMICLOADINGATHIGHSTRAINRATESCOMPUTERSANDSTRUCTURES82200425092524HERVG,GATUINGTF,2002SIMULATIONNUMRIQUEDELENDOMMAGEMENTDEDALLESENBTONETBTONARMIMPACTESPARUNRACTEURDAVIONIDALISLMT,ENSCACHANJIANWENP,CHUHANNZ,YANJIEX,FENGJ,2011ACOMPARATIVESTUDYOFTHEDIFFERENTPROCEDURESFORSEISMICCRACKINGANALYSISOFCONCRETEDAMSSOILDYNAMICSANDEARTHQUAKEENGINEERING31201115

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论