已阅读5页,还剩2页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
积分习题课题目及解答积分概念一、有关可积性的练习:我们知道,在区间,ba连续的函数有原函数,并且有牛顿莱布尼茨公式下述定理说明:函数的连续性并不是牛顿莱布尼茨公式成立的必要条件定理:假设)(xf区间,ba可积且有原函数)(xF(注释:在区间,ba可积的函数未必有原函数)则有)()(d)(aFbFxxfba提示:对于区间,ba任意分割bxxxaTn10:注意到niiiniiixFxFxF111)()()(2求证:假设)(xf在,ba可积,则0,存在区间,ba上的阶梯函数)(xg,使得baxxgxfd|)()(|3设)(xf在,ba可积,求证函数)(cosxf在,ba可积二、求和nnnnnn12)2)(1(1lim(e4)1022dsinlimxxnxn(31)设其它,010,)(nxnxxn10)()(nknnnkxxg求极限10d)(limxxgenxn用极限定义计算10d2xx三、定积分10d)(xxf是和式niiixf1)(的极限,这个定义为定积分的近似计算提供了依据假定积分10d)(xxf存在,则当n时,两个和式:ninnifnS1)1(1和ninnifn1)212(1都趋向于10d)(xxf不过收敛速度有所不同研究下面的问题:假设)(xf在1,0连续,试证MnSxxfn21|d)(|10,Mnxxfn41|d)(|10其中M是与)(xf有关的正数反常积分一、收敛判别)1(dln1收敛pxxxp,)0(dln0pxxxp(发散),)0(d)1ln(0pxxxp(1p收敛))0()d11(ln1pxxxp(1p收敛)20dsinlnxx(收敛),20dsinln1xx(发散),032d)4()2(1xxxx(收敛)1d1)cos(lnxxx(发散.换元xtln)1d)21sin1cos1(xxx(收敛,泰勒公式,比阶判别法)二、反常积分计算03d2xexx,(21,换元法)12darctanxxx()4ln(41,分部积分法),022d)1(lnxxxx(0,分部积分计算,或者换元法)三、证明题:()举例说明:axxfd)(收敛未必有0)(limxfx即使非负函数也是如此()求证:如果)(xf在),a非负且一致连续,axxfd)(收敛,则0)(limxfx2求证1dsinxxx收敛,但是12dsinxxx发散.积分习题课题目及解答积分概念定理:假设)(xf区间,ba可积且有原函数)(xF(注释:在区间,ba可积的函数未必有原函数)则有)()(d)(aFbFxxfba证明:对于区间,ba任意分割bxxxaTn10:由微分中值定理得到)()(aFbFniiiniiixFxFxF111)()()(),(1iiixx当分割的直径趋向于零时,等式右端有极限baxxfd)(2求证:假设)(xf在,ba可积,则0,存在区间,ba上的阶梯函数)(xg,使得baxxgxfd|)()(|解:0,由黎曼定理(定理2.1.4)推出,存在0,使得直径任意分割方式,21nxxxT,都有nkkkkxmM1)(今取一个满足直径的确定的分割,21nxxxT。并取阶梯函数),2,1(),)(1nkxxxmxgkkk,则有babaxxgxfxxgxfd)()(d|)()(|nkxxkkkxmxf11d)(nkxxkkkkxmM11d)(3设)(xf在,ba可积,求证函数)(expxf在,ba可积证明:)(xf在,ba,设|:)(sup|bxaxfM对于区间,ba的任意分割,21nxxxT,|)(sup1iiixxxxfM,|)(inf1iiixxxxfm,iiimM,1iixxvu,有|)()(|)exp(|)(exp)(exp|vfufvfufiiM1(其中介于)(),(vfuf之间,)exp(1MM)对于上述任意分割,21nxxxT,命|)(supexp1*iiixxxxfM,|)(infexp1*iiixxxxfm,*iiimM则有niiiiniiiiniiixxxxvfufxmMx111*1*:)(exp)(supexp)(1111:)()(supniiiixxxxvfufMniiixM11由于)(xf可积,当分割直径趋向于于零时,01niiix,于是01*niiix二、求和nnnnnn12)2)(1(1lim解:令nSnnnnn12)2)(1(1nnnnn1)1)21)(11()1ln()21ln()11ln(1lnnnnnnSAnn12ln2d)1ln(10xx于是eSnn4lim61dsinlim1022xxnxn解:nknknkxxnxxxnx11221022dsindsinnknknkkxxn1122dsinnkkkkttn1)1(22dsin161d212110212xxnnkk设其它,010,)(nxnxxn10)()(nk
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 糖尿病患者饮食护理指导
- Unit4 Growing up 单元话题(成长与经历)写作满分必背范文15篇(解析版)-2025-2026学年九年级英语上册(牛津译林版)
- 护理管理课件感想
- 新疆维吾尔自治区兵团地区十校联考2025年高一上化学期中达标检测试题含解析
- 上海市2025年高一化学第一学期期中联考试题含解析
- 挫伤胸部个案护理
- 云南省迪庆州维西县第二中学2026届高一物理第一学期期末综合测试模拟试题含解析
- 云南省昭通市盐津县一中2025年高一物理第一学期期末达标检测试题含解析
- 西安音乐学院《服装作品集优化》2024-2025学年第一学期期末试卷
- 医院跌倒护理质量改进方案设计
- 给水厂课程设计
- 财政投资评审咨询服务预算和结算评审项目投标方案(技术标)
- HGT 4684-2014 液氯泄漏的处理处置方法
- 中国移动《下一代全光骨干传送网白皮书》
- 前列腺癌手术麻醉管理
- 华为MA5800配置及调试手册
- MOOC 广告创意学-湖南大学 中国大学慕课答案
- 2024年建筑业10项新技术
- 山西国开2024年《农业经营学》形考1-4答案
- 2019年一级注册消防工程师继续教育三科题库+答案
- 【地理】农业区位因素及其变化课件 2023-2024学年高中地理人教版(2019)必修第二册
评论
0/150
提交评论