




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、22.3 .2 实际问题与二次函数之 商品利润,1. 二次函数y=2(x-3)2+5的对称轴是 ,顶点坐标是 .当x= 时,y的最 值是 . 2. 二次函数y=-3(x+4)2-1的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 . 3.二次函数y=2x2-8x+9的对称轴是 ,顶点坐标是 .当x= 时,函数有最_ 值,是 .,x=3,(3,5),3,小,5,x=-4,(-4,-1),-4,大,-1,x=2,(2,1),2,大,1,已知抛物线y=ax2+bx+c与x轴交于 A(x1,0)、B(x2,0)两点。利用一元二次方程根与系数的关系,求证:AB=,某商品现在的售价为每件60元,
2、每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?,请同学们带着以下几个问题读题,(1)题目中有几种调整价格的方法? (2)题目涉及到哪些变量?哪一个量是自变量?哪些量随之发生了变化?,分析:,调整价格包括涨价和降价两种情况,先来看涨价的情况:设每件涨价x元,则每星期售出商品 的利润y也随之变化,我们先来确定y与x的函数关系式.涨 价x元,则每星期少卖 件,实际卖出 件, 每件利润为 元,因此,所得利润 为 元.,10 x,(300-10 x),(60+x-40),(60+x-4
3、0)(300-10 x),y=(60+x-40)(300-10 x),(0 x30),即y=-10(x-5)2+6250,当x=5时,y最大值=6250,怎样确定x的取值范围,可以看出,这个函数的图像是一条抛物线的一部分,这条抛物线的顶点是函数图像的最高点,也就是说当x取顶点坐标的横坐标时,这个函数有最大值.由公式可以求出顶点的横坐标.,所以,当定价为65元时,利润最大,最大利润为6250元,也可以这样求极值,在降价的情况下,最大利润是多少?请你参考(1)的过程得出答案.,解析:设降价x元时利润最大,则每星期可多卖20 x件,实际卖出(300+20 x)件,每件利润为(60-40-x)元,因此
4、,得利润,y=(300+20 x)(60-40-x) =-20(x-5x+6.25)+6125 =-20(x-2.5)+6125,x=2.5时,y极大值=6125,你能回答了吧!,怎样确定x的取值范围,(0 x20),由(1)(2)的讨论及现在的销售情况,你知道应该如何定价能使利润最大了吗?,1.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施。经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。 (1)若商场平均每天要盈利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天盈利最多
5、?,销售问题,归纳小结:,运用二次函数的性质求实际问题的最大值和最小值的一般步骤 :,求出函数解析式和自变量的取值范围,配方变形,或利用公式求它的最大值或最小值。,检查求得的最大值或最小值对应的自变量的值必须在自变量的取值范围内 。,解这类题目的一般步骤,1(2010包头中考)将一条长为20cm的铁丝剪成两 段,并以每一段铁丝的长度为周长各做成一个正方形,则 这两个正方形面积之和的最小值是 cm2,2.某商店购进一种单价为40元的篮球,如果以单价50元售出,那么每月可售出500个,据销售经验,售价每提高1元,销售量相应减少10个. (1)假设销售单价提高x元,那么销售每个篮球所获得的利润是_元
6、,这种篮球每月的销售量是 个(用x的代数式表示) (2)8000元是否为每月销售篮球的最大利润? 如果是,说明理由,如果不是,请求出最大月利润, 此时篮球的售价应定为多少元?,x+10,50010 x,8000元不是每月最大利润,最大月利润为9000元,此时篮球的售价为70元.,3.(2010荆门中考)某商店经营一种小商品,进价为2.5元,据市场调查,销售单价是13.5元时平均每天销售量是500件,而销售单价每降低1元,平均每天就可以多售出100件. (1)假设每件商品降低x元,商店每天销售这种小商品的利润是y元,请你写出y与x之间的函数关系式,并注明x的取值范围; (2)每件小商品销售价是多
7、少元时,商店每天销售这种小商品的利润最大?最大利润是多少?(注:销售利润=销售收入购进成本),解析:(1)降低x元后,所销售的件数是(500+100 x), y=100 x2+600 x+5500 (0 x11 ) (2)y=100 x2+600 x+5500 (0 x11 ) 配方得y=100(x3)2+6400 当x=3时,y的最大值是6400元. 即降价为3元时,利润最大. 所以销售单价为10.5元时,最大利润为6400元. 答:销售单价为10.5元时,最大利润为6400元.,4.(2011菏泽中考)我市一家电子计算器专卖店每只进价13元,售价20元,多买优惠 ;凡是一次买10只以上的,
8、每多买1只,所买的全部计算器每只就降低0.10元,例如,某人买20只计算器,于是每只降价0.10(20-10)=1(元),因此,所买的全部20只计算器都按照每只19元计算,但是最低价为每只16元. (1).求一次至少买多少只,才能以最低价购买? (2).写出该专卖店当一次销售x(只)时,所获利润y(元)与x之间的函数关系式,并写出自变量x的取值范围; (3)若店主一次卖的只数在10至50只之间,问一次卖多少只获得的利润最大?其最大利润为多少?,【解析】(1)设一次购买x只,才能以最低价购买,则有: 0.1(x-10)=20-16,解这个方程得x=50. 答:一次至少买50只,才能以最低价购买
9、(2) (说明:因三段图象首尾相连,所以端点10、50包括在哪个区间均可) (3)将 配方得 ,所以店主一次卖 40只时可获得最高利润,最高利润为160元.(也可用公式 法求得),5.(2010安徽中考)春节期间某水库养殖场为适应市场需求,连续用20天时间,采用每天降低水位以减少捕捞成本的办法,对水库中某种鲜鱼进行捕捞、销售九(1)班数学建模兴趣小组根据调查,整理出第x天(1x20且x为整数)的捕捞与销售的相关信息如表:,(1)在此期间该养殖场每天的捕捞量与前一末的捕捞量相比是如何变化的?,(2)假定该养殖场每天捕捞和销售的鲜鱼没有损失,且 能在当天全部售出,求第x天的收入y(元)与x(天)之 间的函数关系式?(当天收入=日销售额-日捕捞成本)试说明(2)中的函数y随x的变化情况,并指出在第几天 y取得最大值,最大值是多少?,解:(1)该养殖场每天的捕捞量与前一天相比减少10kg; (2)由题意,得,(3)-20,y=-2x2+40 x+14250=-2(x-10)2+14450,又1x20且x为整数,当1x10时,y随
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年物流数字化转型敏感数据脱敏处理合规考核试卷
- 2025年互联网行业跨境电商独立站品牌定位与传播能力测试考核试卷
- 2025年智能分拣设备(机器人分拣)跨境物流资格考核试卷
- 2025年制造业质量提升工程8D(问题解决)报告应用合规考核试卷
- 建筑b证考试试题及答案山东
- 手机应用市场推广策略报告
- 2025年在线课程设计与实施《在线课程互动设计规范》评价认证考核试卷
- 2025年老年慢性病患者末期营养支持管理考核试卷
- 成人中专教育年度质量分析报告
- 2025年物联网跨境物流温湿度监控资格考核试卷
- 2025版SA8000-2025社会责任体面工作国际标准管理体系内审管理评审全套资料(可编辑)
- (2025年)贵州省遵义市【辅警协警】笔试预测试题含答案
- 2025年建筑施工企业薪酬管理规定
- 2020-2025年一级造价师之工程造价案例分析(水利)题库与答案
- 客户开发情况汇报
- 公安执法执勤规范课件
- 2025年冠脉介入考试题库
- 2025年保密观所有试题及答案
- 《机械创新设计》课件-k第五章 机构组合与创新设计
- 国家开放大学《社会心理适应》形考任务1-7参考答案
- 法拉利介绍教学课件
评论
0/150
提交评论