岩石的强度和特征PPT_第1页
岩石的强度和特征PPT_第2页
岩石的强度和特征PPT_第3页
岩石的强度和特征PPT_第4页
岩石的强度和特征PPT_第5页
已阅读5页,还剩102页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、岩石变形性质一、岩石的变形性质v岩石变形的概念岩石变形的概念岩石的变形是指岩石在任何物理因素作用下形状和大小的变化。工程最常研究的是由于力的影响所产生的变形。坝建在多种岩石组成的岩基上,这些岩石的变形性质不同,则由于基岩的不均匀变位可以使坝体的剪应力和主拉应力增长,造成开裂错位等不良后果。如果岩基中岩石的变形性质已知并且在岩基内这此性质的变化也已确定,那么在坝施工中可以采取必要措施防止不均匀变形o 岩石变形对工程的影响岩石的岩石的变形特性变形特性相关概念相关概念 弹性弹性:指:指物体在外力作用下发生变形,当外力撤出后变形物体在外力作用下发生变形,当外力撤出后变形能够恢复的性质能够恢复的性质。塑

2、性塑性:指物体在外力作用下发生变形,当外力撤出后变形:指物体在外力作用下发生变形,当外力撤出后变形不能恢复的性质。不能恢复的性质。脆性脆性:物体在外力作用下变形很小时就发生破坏的性质。:物体在外力作用下变形很小时就发生破坏的性质。延性延性:物体能够承受较大的塑性变形而不丧失其承载能力:物体能够承受较大的塑性变形而不丧失其承载能力的性质。的性质。粘性(流变性)粘性(流变性):物体受力后变形不能在瞬间完成,且应:物体受力后变形不能在瞬间完成,且应变速度(变速度(d/dtd/dt)随应力大小而变化的性质。)随应力大小而变化的性质。弹性变形弹性变形塑性变形塑性变形线弹性变形线弹性变形非线弹性变形非线弹

3、性变形变形变形岩石的变形性质v按照岩石的应力按照岩石的应力- -应变应变- -时间关系,可将其时间关系,可将其力学属性划分为弹性、塑性和粘性。力学属性划分为弹性、塑性和粘性。dtd弹性塑性粘性 o os os odtd 理想弹性体理想弹性体理想弹塑性体理想弹塑性体线性硬化弹塑性体线性硬化弹塑性体理想粘性体理想粘性体岩石的变形性质v弹性:一定的应力范围内,物体受外力作用产生变形,而弹性:一定的应力范围内,物体受外力作用产生变形,而去除外力后能够立即恢复其原有的形状和尺寸大小的性质去除外力后能够立即恢复其原有的形状和尺寸大小的性质o 产生的变形称为弹性变形o 弹性按其应力和应变关系又可分为两种类型

4、o 具有弹性性质的物体称为弹性介质o 应力和应变呈直线关系即线弹性或虎克型弹性或理想弹性o 应力应变呈非直线的非线性弹性岩石的变形性质v塑性:物体受力后产生变形,在外力去除后不能塑性:物体受力后产生变形,在外力去除后不能完全恢复原状的性质完全恢复原状的性质n 不能恢复的那部分变形称为塑性变形,或称永久变形、残余变形n 当物体既有弹性变形又有塑性变形,且具有明显的弹性后效时,弹性变形和塑性变形就难以区别了n 在外力作用下只发生塑性变形,或在一定的应力范围内只发生塑性变形的物体,称为塑性介质岩石的变形性质v粘性粘性( (viscosity) ) 物体受力后变形不能在瞬物体受力后变形不能在瞬时完成,

5、且应变速率随应力增加而增加的性时完成,且应变速率随应力增加而增加的性质,称为粘性。应变速率随应力变化的变形质,称为粘性。应变速率随应力变化的变形称为流动变形。称为流动变形。 一、单轴抗压试验一、单轴抗压试验28岩芯全应力应变曲线15岩心全应力应变曲线二、连续加荷方式单轴压缩条件下的岩块变形oABerarv比例弹性极限或弹性极限:应力应变曲线保持直线关系的极限应力1、变形阶段的划分几个概念 oABCperarv屈服应力:单轴压缩状态下岩石出现塑性变形的极限应力1、变形阶段的划分几个概念 oABCperarv扩容:压缩应力下岩石体积出现膨胀的现象称为岩石扩容1、变形阶段的划分几个概念 空隙压密阶段

6、(OA) 弹性变形阶段(AB) 微裂隙稳定发展阶段(BC) 微裂隙非稳定发展阶段(CD) 破坏后阶段(DE) oABCDEcperaarv峰前峰后1、变形阶段的划分五个阶段 (1 1)0A0A段:微裂隙闭合阶段段:微裂隙闭合阶段, ,微裂隙压密极限微裂隙压密极限A A。 (2)ABAB段:近似直线,弹性阶段,段:近似直线,弹性阶段,B B 为弹性极限。为弹性极限。 (3)BCBC段:屈服阶段,段:屈服阶段,C C为屈服极限。为屈服极限。 (4 4)CDCD段:破坏阶段,段:破坏阶段,D D为强度极限,即单轴抗压强度。为强度极限,即单轴抗压强度。 (5 5)DEDE段:即破坏后阶段段:即破坏后阶

7、段,E E为残余强度。为残余强度。 2 变形参数v变形模量变形模量(modulusofdeformation)是指单轴压缩是指单轴压缩条件下,轴向压应力与轴向应变之比条件下,轴向压应力与轴向应变之比。应力应力- -应变曲应变曲线为直线型,这时变形模量又称为弹性模量线为直线型,这时变形模量又称为弹性模量oLiiEii2 变形参数应力应变关系不成直线岩石的变形特征可以用以下几种模量说明:a0Mmm0ddEi 初始模量:曲线原点处切线斜率 切线模量:曲线上任一点处切线的斜率 割线模量:曲线上某点与原点连线的斜率mddEtmmsE2 变形参数变形参数的一般确定方法 Lo2501i1502iiiiE12

8、12tE5050sE3 峰值前的变形机理v米勒米勒(Miller)(Miller)根据岩石的应力根据岩石的应力- -应变曲线随应变曲线随着岩石的性质有各种不同形式的特点,采着岩石的性质有各种不同形式的特点,采用用2828种岩石进行了大量的单轴试验后,将种岩石进行了大量的单轴试验后,将岩石的应力岩石的应力- -应变曲线分成应变曲线分成6 6种类型种类型类型类型类型类型类型类型弹性关系弹-塑性塑-弹性塑-弹-塑性弹-塑-蠕变性塑-弹-塑性曲线的基本形状曲线的基本形状 致密、坚硬、少裂隙致密、坚硬、少裂隙少裂隙、少裂隙、岩性较软岩性较软致密、坚硬、多裂隙致密、坚硬、多裂隙较多裂隙、较多裂隙、岩性较软

9、岩性较软3 峰值前的变形机理类型:弹性关系是一直线或者近似直线,直到试样发生突然破坏为止。典型岩石:玄武岩、石英岩、白云岩以及极坚固的石灰岩。类型:弹-塑性在应力较低时,近似于直线;应力增加到一定数值后,应力-应变曲线向下弯曲变化,且随着应力逐渐增加,曲线斜率也愈来愈小,直至破坏。典型岩石:石灰岩、泥岩、凝灰岩类型类型类型类型类型类型3 峰值前的变形机理类型:塑-弹性应力较低时,曲线略向上弯,应力增加到一定数值逐渐变为直线,直至试样破坏。典型岩石:花岗岩、片理平行于压力方向的片岩以及某些辉绿岩。类型:塑-弹-塑性压力较低时,曲线向上弯曲;压力增加到一定值后,曲线就成为直线;最后,曲线向下弯曲;

10、曲线似S形。典型岩石:大理岩、片麻岩类 型类 型类 型类 型类 型类 型3 峰值前的变形机理类型:基本上与相同,也呈S形。曲线的斜率较平缓。一般发生在压缩性较高的岩石中。压力垂直于片理的片岩具有这种性质。类型:弹-塑-蠕变性是岩盐的特征,开始有很小一段直线部分,然后有非弹性的曲线部分,并继续不断地蠕变。某些软弱岩石也具有类似特性。类 型类 型类 型类 型类 型类 型三、循环加载方式单轴压缩条件下的岩块变形岩石是弹性的或卸荷点(P)的应力低于岩石的弹性极限(A)表现为弹性恢复PA加载-卸载时的应力应变关系加载-卸载时的应力应变关系2.如果卸荷点(P)的应力高于弹性极限(A),则卸荷曲线偏离原加荷

11、曲线,也不再回到原点,变形除弹性变形外,还出现了塑性变形PAep逐级一次循环加载条件下的变形特性v应力应力- -应变曲线的外包线与连续加载条件下的曲线基本应变曲线的外包线与连续加载条件下的曲线基本一致,说明加、卸荷过程并未改变岩块变形的基本习性,一致,说明加、卸荷过程并未改变岩块变形的基本习性,这种现象称为岩石记忆。这种现象称为岩石记忆。o 随循环次数增加,塑性滞回环的面积有所扩大,卸载曲线的斜率(代表岩石的弹性模量)逐次略有增加,这个现象称为强化每次加荷、卸荷曲线都不重合,且围成一环形面积称为回滞环反复加卸载条件下的变形特性v岩块的破坏产生在反复加、卸荷曲线与应力岩块的破坏产生在反复加、卸荷

12、曲线与应力- -应变全过应变全过程曲线交点处。这时的循环加、卸荷试验所给定的应力,程曲线交点处。这时的循环加、卸荷试验所给定的应力,称为疲劳强度。它是一个比岩块单轴抗压强度低且与循称为疲劳强度。它是一个比岩块单轴抗压强度低且与循环持续时间等因素有关的值环持续时间等因素有关的值 第三节第三节 三轴压缩条件下的岩块变形性三轴压缩条件下的岩块变形性(一)三轴试验(一)三轴试验 真三轴试验 123 常规三轴试验 12=3 围压对变形破坏的影响v岩石破坏前应变岩石破坏前应变峰值强度峰值强度随随 3 3增大而增大增大而增大v随随 3 3增大岩石变形模量增大,软岩增大明显,增大岩石变形模量增大,软岩增大明显

13、,致密的硬岩增大不明显致密的硬岩增大不明显v随随 3 3增大,增大,岩石的塑性不断增大,随岩石的塑性不断增大,随 3 3增大到一增大到一定值时,岩石由弹脆性转变为塑性。这时,定值时,岩石由弹脆性转变为塑性。这时, 3 3的大小称为的大小称为“转化压力转化压力” 。v随随 3 3的增大,的增大,岩块从脆性劈裂破坏逐渐向塑性岩块从脆性劈裂破坏逐渐向塑性剪切及塑性流动破坏方式过渡。剪切及塑性流动破坏方式过渡。围压对变形破坏的影响围压对变形破坏的影响围压对变形破坏的影响第四节岩石的流变性质v岩石的变形和应力受时间因素的影响。在外部条件不岩石的变形和应力受时间因素的影响。在外部条件不变的情况下,岩石的应

14、力或应变随时间变化的现象叫变的情况下,岩石的应力或应变随时间变化的现象叫流变。流变。o 岩石的流变性主要包括以下几个方面:n蠕变:在恒定应力条件下,变形随时间逐渐增长的现象n流动特征:指时间一定时,应变速率与应力的关系n松弛:应变一定时,应力随时间逐渐减小的现象n长期强度:指长期荷载(应变速率小于10-6s)作用下岩石的强度岩石的流变性(时效性、粘性)岩石的流变性(时效性、粘性) 一、流变的概念一、流变的概念岩石的流变性是指岩石应力应变关系随时间而变化的性质。岩石的流变性是指岩石应力应变关系随时间而变化的性质。流变性(粘性)流变性(粘性)蠕变蠕变松弛松弛弹性后效弹性后效蠕变现象蠕变现象当应力保

15、持恒定时,应变随时间增长而增大。当应力保持恒定时,应变随时间增长而增大。松弛现象松弛现象当应变保持恒定时,应力随时间增长而逐渐减当应变保持恒定时,应力随时间增长而逐渐减小的现象。小的现象。弹性后效弹性后效加载或卸载时,弹性应变滞后于应力的现象。加载或卸载时,弹性应变滞后于应力的现象。一、岩石的蠕变性质246824681 01 2页 岩页 岩花 岗 岩(10-5)工程实践发现,在岩石开挖洞室以后一段很长的时间内,支护或衬砌上的压力一直在变化的,这可解释为由蠕变的结果。研究岩石的蠕变对于洞室特别是深埋洞室围岩的变形,有着重要意义。一、蠕变特征曲线AB段-初始蠕变阶段(减速蠕变阶段):曲线呈下凹型,

16、应变最初随时间增大较快,但其应变率随时间迅速递减,到B点达到最小值。在岩块试件上施加恒定荷载,可得到典型蠕变曲线。在加载的瞬间,岩块产生一瞬时应变(OA段),随后便产生连续不断的蠕变变形。根据蠕变曲线的特征,可将岩石蠕变划分为三个阶段。一、蠕变特征曲线BC段-等速蠕变阶段(稳定蠕变阶段):曲线呈近似直线,即应变随时间近似等速增加,直到C点。若在本阶段内某点T卸载,则应变将沿TUV线恢复,最后保留一永久应变p。CD段-加速蠕变阶段:蠕变加速发展直至岩块破坏(D点)。 在初始蠕变阶段中某一点P卸载,应变沿PQR下降至零。卸荷后应力立即消失,但应变随时间逐渐恢复,二者恢复不同步应变恢复总是落后于应力

17、,这种现象称为弹性后效。(1 1)稳定蠕变稳定蠕变:岩石在较小的恒定力作用下,变形随时:岩石在较小的恒定力作用下,变形随时间增加到一定程度后就趋于稳定,不再随时间增加而变化,间增加到一定程度后就趋于稳定,不再随时间增加而变化,应变保持为一个常数。稳定蠕变一般不会导致岩体整体失稳。应变保持为一个常数。稳定蠕变一般不会导致岩体整体失稳。(2 2)非稳定蠕变非稳定蠕变:岩石承受的恒定荷载较大,当岩石应:岩石承受的恒定荷载较大,当岩石应力超过某一临界值时,变形随时间增加而增大,其变形速率力超过某一临界值时,变形随时间增加而增大,其变形速率逐渐增大,最终导致岩体整体失稳破坏。逐渐增大,最终导致岩体整体失

18、稳破坏。(3 3)岩石的长期强度)岩石的长期强度:岩石的蠕变形式取决于岩石应力:岩石的蠕变形式取决于岩石应力大小,当应力小于某一临界值时,岩石产生稳定蠕变;当应大小,当应力小于某一临界值时,岩石产生稳定蠕变;当应力大于该值时,岩石产生非稳定蠕变。则将该临界应力称为力大于该值时,岩石产生非稳定蠕变。则将该临界应力称为岩石的长期强度。岩石的长期强度。 二 岩石蠕变的影响因素v岩石本身性质是影响其蠕变性质的内在因素岩石本身性质是影响其蠕变性质的内在因素246824681012页 岩页 岩花 岗 岩(10-5)二、岩石蠕变的影响因素 应力水平的影响: t第二阶段越长; 小到一定程度,第三蠕变不会出现;

19、 很高,第二阶段短,立即进入三阶段二、岩石蠕变的影响因素v温度对蠕变的影响温度对蠕变的影响温度越高,总的应变量越小;温度越高,总的应变量越小;温度高第二阶段的斜率越小。温度高第二阶段的斜率越小。v湿度对蠕变的影响湿度对蠕变的影响饱和试件第二阶段应变速率和总应变量都将大于饱和试件第二阶段应变速率和总应变量都将大于干燥状态下的试件结果。干燥状态下的试件结果。1)弹性模型(胡克体)2)粘性模型(牛顿体)3)理想塑性模型(圣维南体)三、蠕变模型(一)基本介质模型 岩石性质变化范围大,用多种模型来表述。主要性质:弹性、塑性、粘性(流变)。岩石的强度岩石的强度第一节第一节 岩石的强度特性岩石的强度特性概念

20、:概念:(1 1)屈服屈服:岩石受荷载作用后,随着荷载的增大,:岩石受荷载作用后,随着荷载的增大,由弹性状态过渡到塑性状态,这种过渡称为屈服。由弹性状态过渡到塑性状态,这种过渡称为屈服。(2 2)破坏破坏:把材料进入无限塑性增大时称为破坏。:把材料进入无限塑性增大时称为破坏。(3 3)岩石的强度岩石的强度:是指岩石抵抗破坏的能力。岩石:是指岩石抵抗破坏的能力。岩石在外力作用下,当应力达到某一极限值时便发生破在外力作用下,当应力达到某一极限值时便发生破坏,这个极限值就是岩石的强度。坏,这个极限值就是岩石的强度。一、岩石的单轴抗压强度一、岩石的单轴抗压强度C C 端部效应端部效应破坏形态破坏形态A

21、Pc 为了消除端部效应,国际岩石力学学会推荐采用高径为了消除端部效应,国际岩石力学学会推荐采用高径比(比(h/d)h/d)为为2.52.53.03.0的试件做抗压试验。的试件做抗压试验。 根据根据h/dh/d1 1的试件的抗压强度计算的试件的抗压强度计算h/d1h/d1的岩块的抗压的岩块的抗压强度:强度:式中:式中:c1c1 h/d=1 h/d=1的试件抗压强度;的试件抗压强度; c c h/d1 h/d1的试件抗压强度。的试件抗压强度。 )(22. 0778. 01hdcc scI24 式中:式中:Is点荷载强度指标,点荷载强度指标,2/ DPIs 对于风化严重,难以对于风化严重,难以加工成

22、试件的岩石,可根加工成试件的岩石,可根据点荷载试验计算岩石的据点荷载试验计算岩石的抗压强度:抗压强度:二、岩石的单轴抗拉强度二、岩石的单轴抗拉强度t t 1 1、直接拉伸试验、直接拉伸试验APt 2 2、间接拉伸试验、间接拉伸试验圆饼试件:圆饼试件: tdPt 2 A 劈裂法(巴西试验法)劈裂法(巴西试验法)方形试件方形试件:ahPt 2 式中:式中:P P破坏时的荷载,破坏时的荷载,N;N; d d 试件直径;试件直径;cm; t t试件厚度,试件厚度,cm; a a,h h方形方形试件边长试件边长和厚度和厚度,cm。3/2VPt 不规则试件(加压方向应满足不规则试件(加压方向应满足h/a1

23、.5 ):): 式中:式中:P P破坏时的荷载,破坏时的荷载,N;N; a a加压方向的尺寸;加压方向的尺寸; h h厚度;厚度; V不规则试件的体积。不规则试件的体积。 由于岩石中的微裂隙,在间接拉伸试验中,外力由于岩石中的微裂隙,在间接拉伸试验中,外力都是压力,必然使部分微裂隙闭合,产生摩擦力,从都是压力,必然使部分微裂隙闭合,产生摩擦力,从而使测得的抗拉强度值比直接拉伸法测得的大。而使测得的抗拉强度值比直接拉伸法测得的大。296.0DPt B 点荷载试验法点荷载试验法 经验公式:经验公式:式中:式中:P P破坏时的荷载,破坏时的荷载,N N; D D 试件直径;试件直径;cm。 试件直径

24、试件直径1.273.05cm岩石的抗拉强度远远小于其抗压强度,一般情况下,岩石的抗拉强度远远小于其抗压强度,一般情况下,ct )501101( 三、岩石的剪切强度三、岩石的剪切强度f f 1 1、剪切面上无压应力的剪切试验剪切面上无压应力的剪切试验APAT试件尺寸:直径或边长不小于试件尺寸:直径或边长不小于50mm50mm,高度应等于直径或边长。,高度应等于直径或边长。改变改变P,P,即可测得多组即可测得多组、,作出,作出曲线。曲线。 2 2、剪切面上有压应力的剪切试验、剪切面上有压应力的剪切试验3 3、斜剪试验、斜剪试验 忽略端部摩擦力,忽略端部摩擦力,根据力根据力的平衡原理,作用于剪切面上

25、的平衡原理,作用于剪切面上的法向力的法向力N N和切向力和切向力Q Q可按下式可按下式计算:计算:N = Pcos N = Pcos Q = PsinQ = Psin剪切面上的法向应力剪切面上的法向应力和剪应和剪应力力为:为: cosAPAN sinAPAQ (4 4)三轴压缩剪切试验)三轴压缩剪切试验抗剪强度曲线:抗剪强度曲线:= c+tg= c+tg四、岩石的三向抗压强度四、岩石的三向抗压强度1c1c 岩石在三轴压缩下的极限应力岩石在三轴压缩下的极限应力1c1c为三轴抗压强度,为三轴抗压强度,它随围压增大而升高。它随围压增大而升高。31sin1sin1 cc 按照莫尔强度理论按照莫尔强度理

26、论, ,可按下式计算三向抗压强度可按下式计算三向抗压强度: :式中式中: : 1c1c 岩石的三向抗压强度;岩石的三向抗压强度;c c岩石的单向抗压强度;岩石的单向抗压强度; 岩石的内摩擦角。岩石的内摩擦角。五、岩石的破坏形式五、岩石的破坏形式就其破坏本质而言,岩石破坏有以下三种类型:就其破坏本质而言,岩石破坏有以下三种类型:1 1、拉破坏、拉破坏2 2、剪切破坏、剪切破坏3 3、塑性流动破坏、塑性流动破坏第二节、影响岩石力学性质的因素第二节、影响岩石力学性质的因素一、矿物成分对岩石力学性质的影响一、矿物成分对岩石力学性质的影响1 1、矿物硬度的影响、矿物硬度的影响 矿物硬度大,岩石的弹性越明

27、显,强度越高。矿物硬度大,岩石的弹性越明显,强度越高。 如岩浆岩,橄榄石等矿物含量的增多,弹性越明显,如岩浆岩,橄榄石等矿物含量的增多,弹性越明显,强度越高;强度越高; 沉积岩中,砂岩的弹性及强度随石英含量的增加而沉积岩中,砂岩的弹性及强度随石英含量的增加而增高;石灰岩的弹性和强度随硅质物含量的增加而增高。增高;石灰岩的弹性和强度随硅质物含量的增加而增高。 变质岩中,含硬度低的矿物(如云母、滑石、蒙脱变质岩中,含硬度低的矿物(如云母、滑石、蒙脱石、伊利石、高岭石等)越多,强度越低。石、伊利石、高岭石等)越多,强度越低。2 2、不稳定矿物的影响、不稳定矿物的影响 化学化学性质性质不稳定的矿物,如

28、黄铁矿、霞石以不稳定的矿物,如黄铁矿、霞石以及易溶于水的盐类,如石膏、滑石、钾盐等,具及易溶于水的盐类,如石膏、滑石、钾盐等,具有易变性和溶解性。含有这些矿物的岩石其力学有易变性和溶解性。含有这些矿物的岩石其力学性质随时间而变化。性质随时间而变化。3 3、粘土矿物的影响、粘土矿物的影响 含有粘土矿物(蒙脱石、伊利石、高岭石等)含有粘土矿物(蒙脱石、伊利石、高岭石等)的岩石,遇水时发生膨胀和软化,强度降低很大。的岩石,遇水时发生膨胀和软化,强度降低很大。 二、岩石的结构构造对岩石力学性质的影响二、岩石的结构构造对岩石力学性质的影响1 1、岩石结构的影响、岩石结构的影响 岩石的结构岩石的结构指岩石

29、中晶粒或岩石颗粒的大小、形指岩石中晶粒或岩石颗粒的大小、形状以及结合方式。状以及结合方式。岩浆岩:粒状结构、斑状结构、玻璃质结构;岩浆岩:粒状结构、斑状结构、玻璃质结构;沉积岩:粒状结构、片架结构、斑基结构;沉积岩:粒状结构、片架结构、斑基结构;变质岩:板理结构、片理结构、片麻理结构。变质岩:板理结构、片理结构、片麻理结构。岩石的结构对岩石力学性质的影响主要表现在结构的岩石的结构对岩石力学性质的影响主要表现在结构的差异上。例如:粒状结构中,等粒结构比非等粒结构强差异上。例如:粒状结构中,等粒结构比非等粒结构强度高;在等粒结构中,细粒结构比粗粒结构强度高。度高;在等粒结构中,细粒结构比粗粒结构强

30、度高。 2 2、岩石构造的影响、岩石构造的影响 岩石的构造岩石的构造指岩石中不同矿物集合体之间或矿物指岩石中不同矿物集合体之间或矿物集合体与其他组成部分之间的排列方式及充填方式。集合体与其他组成部分之间的排列方式及充填方式。岩浆岩:颗粒排列无一定的方向,形成块状构造;岩浆岩:颗粒排列无一定的方向,形成块状构造;沉积岩:层理构造、页片状构造;沉积岩:层理构造、页片状构造;变质岩:板状构造、片理构造、片麻理构造。变质岩:板状构造、片理构造、片麻理构造。层理、片理、板理和流面构造等统称为层状构造。层理、片理、板理和流面构造等统称为层状构造。宏观上,块状构造的岩石多具有各向同性特征,而层宏观上,块状构

31、造的岩石多具有各向同性特征,而层状构造岩石具有各向异性特征。状构造岩石具有各向异性特征。三、水对岩石力学性能的影响三、水对岩石力学性能的影响岩石中的水岩石中的水 水对岩石力学性质的影响与岩石的水对岩石力学性质的影响与岩石的孔隙性孔隙性和和水理性水理性(吸水性吸水性、软化性软化性、崩解性崩解性、膨胀性膨胀性、抗冻性抗冻性)有关。)有关。水对岩石力学性质的影响主要体现在水对岩石力学性质的影响主要体现在5 5个方面:个方面:连结作用、润滑作用、水楔作用、孔隙压力作用、溶连结作用、润滑作用、水楔作用、孔隙压力作用、溶蚀及潜蚀作用。蚀及潜蚀作用。结合水(连结、润滑、水楔作用)结合水(连结、润滑、水楔作用

32、)重力水(自由水)(孔隙压力、溶重力水(自由水)(孔隙压力、溶蚀及潜蚀作用)。蚀及潜蚀作用)。1 1、连结作用:、连结作用:束缚在矿物表面的水分子通过其吸引束缚在矿物表面的水分子通过其吸引力将矿物颗粒拉近,起连结作用。这种作用相对于矿物力将矿物颗粒拉近,起连结作用。这种作用相对于矿物颗粒间的连结强度非常微弱,故对岩石力学性质影响很颗粒间的连结强度非常微弱,故对岩石力学性质影响很小,但对于被土充填的结构面的力学性质影响很明显。小,但对于被土充填的结构面的力学性质影响很明显。2 2、润滑作用:、润滑作用:由可溶盐、胶体矿物连结的岩石,当由可溶盐、胶体矿物连结的岩石,当水浸入时,可溶盐溶解,胶体水解

33、,导致矿物颗粒间的水浸入时,可溶盐溶解,胶体水解,导致矿物颗粒间的连结力减弱,摩擦力降低,水起到润滑作用。连结力减弱,摩擦力降低,水起到润滑作用。3 3、水楔作用:、水楔作用:当两个矿物颗粒靠得很近,有水分子补当两个矿物颗粒靠得很近,有水分子补充到矿物表面时,矿物颗粒利用其表面吸引力将水分子充到矿物表面时,矿物颗粒利用其表面吸引力将水分子拉到自己周围,在颗粒接触处由于吸引力作用使水分子拉到自己周围,在颗粒接触处由于吸引力作用使水分子向两个矿物颗粒之间的缝隙内挤入,这种现象称为水楔向两个矿物颗粒之间的缝隙内挤入,这种现象称为水楔作用。作用。 水楔作用的两种结果:一是岩石体积膨胀,产生膨水楔作用的

34、两种结果:一是岩石体积膨胀,产生膨胀压力;二是水胶连结代替胶体及可溶盐连结,产生润胀压力;二是水胶连结代替胶体及可溶盐连结,产生润滑作用,岩石强度降低。滑作用,岩石强度降低。4 4、孔隙水压力作用:、孔隙水压力作用:对于孔隙或裂隙中含有自由水的对于孔隙或裂隙中含有自由水的岩石,当其突然受荷载作用水来不及排出时,会产生很岩石,当其突然受荷载作用水来不及排出时,会产生很高的孔隙水压力,减小了颗粒之间的压应力,从而降低高的孔隙水压力,减小了颗粒之间的压应力,从而降低了岩石的抗剪强度。了岩石的抗剪强度。5 5、溶蚀潜蚀作用:、溶蚀潜蚀作用:水在岩石中渗透的过程中,可将水在岩石中渗透的过程中,可将可溶物

35、质溶解带走(溶蚀),有时将岩石中的小颗粒冲可溶物质溶解带走(溶蚀),有时将岩石中的小颗粒冲走(潜蚀),从而使岩石强度大为降低,变形增大。走(潜蚀),从而使岩石强度大为降低,变形增大。 水对岩石强度的影响通常用软化系数表示。水对岩石强度的影响通常用软化系数表示。四、四、 温度对岩石力学性能的影响温度对岩石力学性能的影响 1 1、不同温度下岩石的变形特征和强度、不同温度下岩石的变形特征和强度 一般而言,随着温度的增高,岩石的延性加大,屈服一般而言,随着温度的增高,岩石的延性加大,屈服点降低,强度也降低。点降低,强度也降低。2 2、高温高压下岩石的破坏机理、高温高压下岩石的破坏机理 岩石在高温高压下

36、产生微裂隙。岩石在高温高压下产生微裂隙。例如花岗岩:例如花岗岩:(1 1)微破碎带;)微破碎带; (2 2)粒间微)粒间微透镜带;透镜带; (3 3)短程破裂;)短程破裂; (4 4)扭折带边界)扭折带边界破裂;破裂; (5 5)晶内破裂;)晶内破裂; (6 6)颗粒边界破裂。)颗粒边界破裂。五、五、 加载速度对岩石力学性能的影响加载速度对岩石力学性能的影响 加载速度对岩石的变形性质和强度指标有明显加载速度对岩石的变形性质和强度指标有明显的影响:加载速度越快,测得的弹性模量越大,强的影响:加载速度越快,测得的弹性模量越大,强度指标越高。度指标越高。 国际岩石力学学会(国际岩石力学学会(ISRM

37、)ISRM)建议加载速度为建议加载速度为0.50.51MP1MPa/s,a/s,一般从开始试验直至岩石试件破坏的一般从开始试验直至岩石试件破坏的时间为时间为5 51010分钟。分钟。六、六、 受力状态对岩石力学性能的影响受力状态对岩石力学性能的影响 岩石的脆性和塑性并非岩石的脆性和塑性并非岩石固有的性质,而与岩石岩石固有的性质,而与岩石的受力状态有关,随着受力的受力状态有关,随着受力状态的变化,其脆性和塑性状态的变化,其脆性和塑性时可以相互转化的。时可以相互转化的。例如坚硬的花岗岩在很高例如坚硬的花岗岩在很高的地应力条件下,表现出明的地应力条件下,表现出明显的塑性变形。这与试验结显的塑性变形。

38、这与试验结果吻合。果吻合。七、七、 风化对岩石力学性能的影响风化对岩石力学性能的影响 风化程度不同,对岩石力学性质的影响程度风化程度不同,对岩石力学性质的影响程度也不同:也不同:1 1、降低岩体结构面的粗糙程度并产生新的裂隙,、降低岩体结构面的粗糙程度并产生新的裂隙,使岩体分裂成更小的碎块,进一步破坏岩体的完使岩体分裂成更小的碎块,进一步破坏岩体的完整性。整性。2 2、岩石在化学风化过程中,矿物成分发生变化,、岩石在化学风化过程中,矿物成分发生变化,原生矿物受水解、水化、氧化等作用,逐渐为次原生矿物受水解、水化、氧化等作用,逐渐为次生矿物所代替,特别是产生粘土矿物,并随着风生矿物所代替,特别是

39、产生粘土矿物,并随着风化程度的加深,这类矿物逐渐增多。化程度的加深,这类矿物逐渐增多。七、七、 风化对岩石力学性能的影响风化对岩石力学性能的影响 3 3、由于岩石和岩体的成分结构和构造的变化,岩、由于岩石和岩体的成分结构和构造的变化,岩体的物理力学性质也随之变化。一般:抗水性降低,体的物理力学性质也随之变化。一般:抗水性降低,亲水性增高(如膨胀性、崩解性、软化性增强),亲水性增高(如膨胀性、崩解性、软化性增强),强度降低,压缩性加大,孔隙性增加,透水性增强强度降低,压缩性加大,孔隙性增加,透水性增强(但当风化剧烈,粘土矿物较多时,透水性又趋于(但当风化剧烈,粘土矿物较多时,透水性又趋于降)。降

40、)。总之,岩体在风化营力作用下,岩体的力学性质总之,岩体在风化营力作用下,岩体的力学性质大大恶化。大大恶化。第三节、岩石的强度理论第三节、岩石的强度理论 强度理论强度理论研究岩体破坏原因和破坏研究岩体破坏原因和破坏条件的理论。条件的理论。 强度准则强度准则在外荷载作用下岩石发生在外荷载作用下岩石发生破坏时,其应力(应变)所必须满足的条件。破坏时,其应力(应变)所必须满足的条件。强度准则也称破坏准则强度准则也称破坏准则或破坏判据或破坏判据。一、一点的应力状态一、一点的应力状态yxzox x y y z z zx zx yx yx yz yz zy zy xy xy xz xz ab 1 1、应力

41、符号规定、应力符号规定(1 1)正应力以压应力为正,拉应力为负)正应力以压应力为正,拉应力为负;(2 2)剪应力以使物体产生逆时针转为正,反之为负;)剪应力以使物体产生逆时针转为正,反之为负;(3 3)角度以)角度以x x轴正向沿逆时针方向转动所形成的夹角为正,轴正向沿逆时针方向转动所形成的夹角为正,反之为负。反之为负。 2 2、一点应力状态、一点应力状态6 6个应力分量:个应力分量: x x,y y,z z, ,xyxy,yzyz,zxzx3、平面问题的简化、平面问题的简化 在实际工程中,可根据不同的受力状态,将三维问题简化在实际工程中,可根据不同的受力状态,将三维问题简化为平面问题。为平面

42、问题。(1 1)平面应力问题)平面应力问题;(2 2)平面应变问题。)平面应变问题。4 4、基本应力公式基本应力公式 以平面应力问题为例,如图,任以平面应力问题为例,如图,任意角度意角度截面的应力计算公式如下:截面的应力计算公式如下: 2sin2cos22xyyxyxn 2cos2sin2xyyxn 最大最小主应力:最大最小主应力: 最大主应力与最大主应力与 x x轴的夹轴的夹角角可按下式求得:可按下式求得: yxxytg 222231)2(2xyyxyx 任一斜面上的正应力和剪应力用主应力表示为:任一斜面上的正应力和剪应力用主应力表示为: 2cos223131 n 2sin231 n莫尔应力

43、圆的方程:莫尔应力圆的方程:2312231)2()2( nnBADLc二、最大拉应变理论二、最大拉应变理论 该理论认为,无论在什么应力状态下,只要岩石的最该理论认为,无论在什么应力状态下,只要岩石的最大拉伸应变大拉伸应变达到一定的极限应变达到一定的极限应变t t时,岩石就会时,岩石就会发生发生拉伸断裂破坏,其强度条件为:拉伸断裂破坏,其强度条件为:Ett 式中:式中: t t 单轴拉伸破坏时的极限应变;单轴拉伸破坏时的极限应变; E E岩石的弹性模量;岩石的弹性模量; t t单轴抗拉强度单轴抗拉强度。 讨论:讨论: 1 1、在单轴拉伸条件下:岩石、在单轴拉伸条件下:岩石发生发生拉伸断裂破坏,其

44、强度拉伸断裂破坏,其强度条件为:条件为:Ett 2 2、在单轴压缩条件下:岩石、在单轴压缩条件下:岩石发生纵向发生纵向拉伸断裂拉伸断裂破坏,其强度条件为:破坏,其强度条件为:EEtct 即:即:tc 3 3、在三轴压缩条件下:、在三轴压缩条件下:3 3方向的应变为方向的应变为 )(12133 E 如果如果3 3(1 1 + +2 2),),则为拉应变,其强度条件为则为拉应变,其强度条件为 而:而:Ett tE )(12133 故,强度条件又可表示为:故,强度条件又可表示为:t )(213 在常规三轴条件下(在常规三轴条件下( 3 3 2 2)强度条件为:强度条件为:t 13)1(三、库伦(三、

45、库伦(Coulomb)Coulomb)准则准则 1773 1773年库伦提出了一个重要的准则(年库伦提出了一个重要的准则(“摩擦摩擦”准则)。准则)。库伦认为,材料的破坏主要是剪切破坏,当材料某一斜面库伦认为,材料的破坏主要是剪切破坏,当材料某一斜面上的剪应力达到或超过该破坏面上的粘结力和摩擦阻力之上的剪应力达到或超过该破坏面上的粘结力和摩擦阻力之和,便会造成材料沿该斜面产生剪切滑移破坏。和,便会造成材料沿该斜面产生剪切滑移破坏。 tgcf 式中:式中: f f 材料剪切面上的抗剪强度;材料剪切面上的抗剪强度; c c材料的粘结力;材料的粘结力; 剪切面上的正应力。剪切面上的正应力。 四四、莫

46、尔强度理论、莫尔强度理论1 1、莫尔强度理论的基本思想、莫尔强度理论的基本思想 :莫尔强度理论是建立在莫尔强度理论是建立在试验数据的统计分析基础之上的。试验数据的统计分析基础之上的。 19101910年莫尔提出材料年莫尔提出材料的破坏是剪切破坏,材料在复杂应力状态下,某一斜面的破坏是剪切破坏,材料在复杂应力状态下,某一斜面上的剪应力达到一极限值,造成材料沿该斜面产生剪切上的剪应力达到一极限值,造成材料沿该斜面产生剪切滑移破坏,且破坏面平行于中间主应力滑移破坏,且破坏面平行于中间主应力2 2作用方向(即作用方向(即2 2不影响材料的剪切破坏),破坏面上的剪应力不影响材料的剪切破坏),破坏面上的剪

47、应力f f 是是该面上法向应力该面上法向应力的函数的函数, ,即:即: f f () 2 2、莫尔强度包络线:、莫尔强度包络线: 指各极限应力圆的破坏点所组成的指各极限应力圆的破坏点所组成的轨迹线。轨迹线。f f f() f() 在在f f 坐标中是一条曲线,称坐标中是一条曲线,称为莫尔包络线,表示材料受到不同应力作用达到极限状态为莫尔包络线,表示材料受到不同应力作用达到极限状态时,滑动面上的法向应力时,滑动面上的法向应力与剪应力与剪应力f f 的关系。极限应的关系。极限应力圆上的某点与强度包络线相切,即表示在该应力状态下力圆上的某点与强度包络线相切,即表示在该应力状态下材料发生破坏。材料发生

48、破坏。 用极限应力表示的莫尔圆称为极限莫尔应力圆(简称极用极限应力表示的莫尔圆称为极限莫尔应力圆(简称极限应力圆)。限应力圆)。 莫尔强度包络线的意义:莫尔强度包络线的意义:包络线上任意一点的坐标都包络线上任意一点的坐标都代表岩石沿某一剪切面剪切破坏所需的剪应力和正应力,代表岩石沿某一剪切面剪切破坏所需的剪应力和正应力,即任意一点都对应了一个与之相切的极限应力圆。即任意一点都对应了一个与之相切的极限应力圆。 莫尔强度包络线的应用:莫尔强度包络线的应用:运用强度曲线可以直接判断岩运用强度曲线可以直接判断岩石能否破坏。将应力圆与强度曲线放在同一个坐标系中,若石能否破坏。将应力圆与强度曲线放在同一个

49、坐标系中,若莫尔应力圆在包络线之内,则岩石不破坏;若莫尔应力圆与莫尔应力圆在包络线之内,则岩石不破坏;若莫尔应力圆与强度曲线相切,则岩石处于极限平衡状态;若莫尔应力圆与强度曲线相切,则岩石处于极限平衡状态;若莫尔应力圆与强度曲线相交,则岩石肯定破坏。强度曲线相交,则岩石肯定破坏。)( f o 莫尔强度包络线与应力圆莫尔强度包络线与应力圆3 3、莫尔库仑强度理论、莫尔库仑强度理论 f f = = f(f() )所表达的是一条曲线,该曲线的型式有:所表达的是一条曲线,该曲线的型式有:直线型、抛物线型、双曲线型、摆线型。而直线型与库伦直线型、抛物线型、双曲线型、摆线型。而直线型与库伦准则表达式相同,

50、因此,也称为库伦莫尔准则表达式相同,因此,也称为库伦莫尔强度理论。强度理论。由由库仑公式表示莫尔包络线的强度理论,称为莫尔库仑强库仑公式表示莫尔包络线的强度理论,称为莫尔库仑强度理论。度理论。 tgcf 用主应力表示:用主应力表示: sin1cos2sin1sin131 c 上式也称为极限平衡方程。上式也称为极限平衡方程。 莫尔库仑强度理论不适合剪切莫尔库仑强度理论不适合剪切面上正应力为拉应力的情况。面上正应力为拉应力的情况。3 3、莫尔库仑强度理论、莫尔库仑强度理论 如图的几何关系,有:如图的几何关系,有: sin1cos2 ct sin1cos2 cc sin1cos2sin1sin131

51、 cccck 31 sin1sin1 k 其中:其中:五、格里菲斯强度理论(五、格里菲斯强度理论(GriffithGriffith的脆性断裂理论)的脆性断裂理论) 1921 1921年格里菲斯在年格里菲斯在研究脆性材料的基础上,研究脆性材料的基础上,提出了评价脆性材料的提出了评价脆性材料的强度理论。该理论大约强度理论。该理论大约在上世纪在上世纪7070年代末年代末8080年年代初引入到岩石力学研代初引入到岩石力学研究领域。究领域。 (1 1)在脆性材料内)在脆性材料内部存在着许多杂乱无章的部存在着许多杂乱无章的扁平微小张开裂纹。扁平微小张开裂纹。 在在外力作用下,这些裂纹尖外力作用下,这些裂纹

52、尖端端附近附近产生很大的拉应力产生很大的拉应力集中,导致新裂纹产生,集中,导致新裂纹产生,原有裂纹扩展、贯通,从原有裂纹扩展、贯通,从而使材料产生宏观破坏。而使材料产生宏观破坏。1、格里菲斯强度理论的基本思想:、格里菲斯强度理论的基本思想: (2 2)裂纹将沿着与最大拉应力作用方向相垂直的方向扩展。)裂纹将沿着与最大拉应力作用方向相垂直的方向扩展。 2tgtg 式中:式中:新裂纹长轴与新裂纹长轴与原裂纹长轴的夹角;原裂纹长轴的夹角; 原裂纹长轴与原裂纹长轴与最大主应力的夹角。最大主应力的夹角。2 2、格里菲斯强度、格里菲斯强度判据判据 根据椭圆孔应力状态的解析解,得出了格里菲斯的强根据椭圆孔应

53、力状态的解析解,得出了格里菲斯的强度判据:度判据:t )(8)(31231)(22cos3131 (1 1) 0331 破裂条件为:破裂条件为: 危险裂纹方位角:危险裂纹方位角: t 302sin (2 2)0331 破裂条件为:破裂条件为: 危险裂纹方位角:危险裂纹方位角: 如果应力点(如果应力点(1 1, ,3 3) )落在强度曲线落在强度曲线上或曲线左边,则岩石发生破坏,上或曲线左边,则岩石发生破坏,否则不破坏。否则不破坏。 讨论:讨论:(1 1)单轴拉伸应力状态下)单轴拉伸应力状态下1 1=0,=0,3 3 0,0,满足满足1 1+3+33 3 0,0,破裂条件为:破裂条件为: 危险裂

54、纹方位角:危险裂纹方位角: t 3002sin 破裂条件为:破裂条件为: 危险裂纹方位角:危险裂纹方位角: 3 3 (2 2)双向拉伸应力状态下)双向拉伸应力状态下1 10,0,3 30,0,满足满足1 1+3+33 3 0,0, t 3002sin 3 3 1 1 (3 3)单轴压缩应力状态下)单轴压缩应力状态下1 10,0,3 3 = 0,= 0, 满足满足1 1+3+33 3 0 0破裂条件为:破裂条件为: 危险裂纹方位角:危险裂纹方位角: 破裂条件为:破裂条件为: 危险裂纹方位角:危险裂纹方位角: (2 2)双向压缩应力状态下)双向压缩应力状态下t )(8)(3123121)(22cos3131 )(22cos3131 = = /6/6 1 10,0,3 3 0, 0, 满足满足1 1+3+33 3 0 0t )(8)(312310 0 /4/41)(203131 1 1 3 3、修正的格里菲斯强度、修正的格里菲斯强度判据判据 1962 1962年,麦克年,麦克. .克林脱克等

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论