版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、工程应用数学作业(lsqnonlin和lsqcurvefit)材研1301目的:学会使用lsqnonlin 和lsqcurvefit两种不同的最优化函数,并比较用微分法和积分法来估算微分动力学方程的参数。过程:一般的动力学方程如下:,分别用微分法和积分法进行反应速率分析得到速率常数k和反应级数n。1、lsqnonlin微分法function KineticsEst1_Diff % 动力学参数辨识: 用微分法进行反应速率分析得到速率常数k和反应级数nclear allclc % 动力学数据t = 0 20 40 60 120 180 300;CAm = 10 8 6 5 3 2 1; % 用最小
2、二乘样条拟合法计算微分dCA/dt-使用不经过实验点的B样条插值函数knots = 3;K = 3; % 三次B样条sp = spap2(knots,K,t,CAm);pp = fnder(sp); % 计算B样条函数的导函数dCAdt = fnval(pp,t) % 计算t处的导函数值 % 绘制浓度拟合曲线ti = linspace(t(1),t(end),200);CAi = fnval(sp,ti);plot(t,CAm,'ro',ti,CAi,'b-')xlabel('t')ylabel('C_A')legend('
3、;实验值','B样条拟合') % 非线性拟合beta0 = 0.0053 1.39;beta,resnorm,residual,exitflag,output,lambda,jacobian = . lsqnonlin(OptObjFunc,beta0,rAm,CAm); ci = nlparci(beta,residual,jacobian); % 参数辨识结果fprintf('Estimated Parameters:n')fprintf('tk = %.4f ± %.4fn',beta(1),ci(1,2)-beta(1)
4、fprintf('tn = %.2f ± %.2fn',beta(2),ci(2,2)-beta(2)fprintf(' The sum of the squares is: %.1enn',sum(residual.2) % 绘制反应速率拟合曲线figureplot(t,rAm,'ro',t,Rate(CAm,beta),'b*')xlabel('t')ylabel('dC_Adt')legend('Experiment','Kinetic Model')
5、 % -function f = OptObjFunc(beta,rAm,CAm)rAc = Rate(CAm,beta);f = rAc - rAm; % -function rA = Rate(CA,beta)rA = -beta(1)*CA.beta(2); % -rA = -dCA/dt = k*CAn, 其中k=beta(1), n=beta(2)输入>> KineticsEst1_Diff输出dCAdt = -0.1258 -0.0977 -0.0696 -0.0502 -0.0179 -0.0132 -0.0039Local minimum possible.lsqn
6、onlin stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance.<stopping criteria details>Estimated Parameters:k = 0.0055 ± 0.0025n = 1.37 ± 0.22 The sum of the squares is: 9.9e-05lsqnonlin积分法functio
7、n KineticsEst1_int% 动力学参数辨识: 用积分法进行反应速率分析得到速率常数k和反应级数nclear allclcglobal CAmt = 0 20 40 60 120 180 300;CAm = 10 8 6 5 3 2 1'% 非线性拟合beta0 = 0.0053 1.39;tspan = 0 20 40 60 120 180 300;CA0 = 10;beta,resnorm,resid,exitflag,output,lambda,jacobian = . lsqnonlin(OptObjFunc,beta0,tspan,CA0,CAm)ci = nlpa
8、rci(beta,resid,jacobian) % 拟合效果图(实验与拟合的比较) t4plot CA4plot = ode45(KineticsEqs,tspan(1) tspan(end),CA0,beta);plot(t,CAm,'bo',t4plot,CA4plot,'k-')legend('Exp','Model')xlabel('时间, s')ylabel('浓度, mol/L') % 残差关于拟合值的残差图t CAc = ode45(KineticsEqs,tspan,CA0,bet
9、a);figureplot(CAc,resid,'*')xlabel('浓度拟合值(mol/L)')ylabel('残差R (mol/L)')refline(0,0) % 参数辨识结果fprintf('Estimated Parameters:n')fprintf('tk = %.4f ±%.4fn',beta(1),ci(1,2)-beta(1)fprintf('tn = %.2f ±%.2fn',beta(2),ci(2,2)-beta(2) % -function f =
10、OptObjFunc(beta,tspan,CA0,CAm)t CAc = ode45(KineticsEqs,tspan,CA0,beta);f = CAc - CAm; % -function dCAdt = KineticsEqs(t,CA,beta)dCAdt = -beta(1)*CAbeta(2); % k = beta(1), n = beta(2)输入>> KineticsEst1_int输出Local minimum possible.lsqnonlin stopped because the final change in the sum of squares
11、relative to its initial value is less than the default value of the function tolerance.<stopping criteria details>beta = 0.0047 1.4555resnorm = 0.0941resid = 0 -0.2408 0.1813 0.0303 -0.0169 -0.0435 0.0131exitflag = 3output = firstorderopt: 0.0041 iterations: 3 funcCount: 12 cgiterations: 0 alg
12、orithm: 'trust-region-reflective' message: 1x457 charlambda = lower: 2x1 double upper: 2x1 doublejacobian = (2,1) -394.7680 (3,1) -566.6235 (4,1) -629.8164 (5,1) -588.7875 (6,1) -478.0379 (7,1) -305.6976 (2,2) -4.0422 (3,2) -5.4804 (4,2) -5.7590 (5,2) -4.5555 (6,2) -3.1228 (7,2) -1.3857ci =
13、0.0031 0.0063 1.2700 1.6410Estimated Parameters:k = 0.0047 ± 0.0016n = 1.46 ± 0.192、lsqcurvefit微分法function Lsqcurvefit_Diff clear allclcglobal CAmt = 0 20 40 60 120 180 300;CAm = 10 8 6 5 3 2 1;knots = 3;K = 3; sp = spap2(knots,K,t,CAm);pp = fnder(sp); dCAdt = fnval(pp,t) rAm = dCAdt;ti =
14、linspace(t(1),t(end),200);CAi = fnval(sp,ti);plot(t,CAm,'ro',ti,CAi,'b-')xlabel('t')ylabel('C_A')legend('实验值','B样条拟合') beta0 = 0.0053 1.39;beta,resnorm,residual,exitflag,output,lambda,jacobian = . lsqcurvefit(OptObjFunc,beta0,rAm,CAm); ci = nlparci(bet
15、a,residual,jacobian); fprintf('Estimated Parameters:n')fprintf('tk = %.4f ± %.4fn',beta(1),ci(1,2)-beta(1)fprintf('tn = %.2f ± %.2fn',beta(2),ci(2,2)-beta(2)fprintf(' The sum of the squares is: %.1enn',sum(residual.2) figureplot(t,rAm,'ro',t,Rate(CAm
16、,beta),'b*')xlabel('t')ylabel('dC_Adt')legend('Experiment','Kinetic Model') % -function f = OptObjFunc(beta,rAm)global CAmrAc = Rate(CAm,beta);f = rAcrAm+CAm; % -function rA = Rate(CA,beta)rA = -beta(1)*CA.beta(2); 输入>> Lsqcurvefit _Diff输出dCAdt = -0.1258
17、 -0.0977 -0.0696 -0.0502 -0.0179 -0.0132 -0.0039Local minimum possible.lsqcurvefit stopped because the final change in the sum of squares relative to its initial value is less than the default value of the function tolerance.<stopping criteria details>Estimated Parameters:k = 0.0055 ± 0.0
18、025n = 1.37 ± 0.22 The sum of the squares is: 9.9e-05 lsqcurvefit积分法function Lsqcurvefit_int clear allclcglobal CAmt = 0 20 40 60 120 180 300;CAm = 10 8 6 5 3 2 1'beta0 = 0.0053 1.39;tspan = 0 20 40 60 120 180 300;CA0 = 10;beta,resnorm,resid,exitflag,output,lambda,jacobian = . lsqcurvefit(O
19、ptObjFunc,beta0,tspan,CAm,CA0)ci = nlparci(beta,resid,jacobian) t4plot CA4plot = ode45(KineticsEqs,tspan(1) tspan(end),CA0, ,beta);plot(t,CAm,'bo',t4plot,CA4plot,'k-')legend('Exp','Model')xlabel('时间t, s')ylabel('浓度C_A, mol/L') t CAc = ode45(KineticsEqs
20、,tspan,CA0,beta);figureplot(CAc,resid,'*')xlabel('浓度拟合值(mol/L)')ylabel('残差R (mol/L)')refline(0,0)fprintf('Estimated Parameters:n')fprintf('tk = %.4f ± %.4fn',beta(1),ci(1,2)-beta(1)fprintf('tn = %.2f ± %.2fn',beta(2),ci(2,2)-beta(2)% -functio
21、n f = OptObjFunc(beta,tspan,CA0) t CAc = ode45(KineticsEqs,tspan,CA0,beta);f = CAc ;% -function dCAdt = KineticsEqs(t,CA,beta)dCAdt = -beta(1)*CAbeta(2); 输入>> Lsqcurvefit _int输出beta = 0.0047 1.4555resnorm = 0.0941resid = 0 -0.2408 0.1813 0.0303 -0.0169 -0.0435 0.0131exitflag = 3output = firstorderopt: 0.0041 iterations: 3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 灾害信息调查统计制度
- 消防队六项制度
- 2026年市场调查与研究市场预测与策略考核题目集
- 消防安全管理十三项制度
- 流程规约制度
- 检验科质控品和校准品管理制度
- 检修安全责任制度
- 校园监督员制度
- 旅游服务流程与客户关系管理指南
- 2025四川南充临江产业发展集团有限责任公司市场化选聘5人笔试参考题库附带答案详解
- 高标准农田建设项目验收方案
- 2025年煤制天然气行业研究报告及未来发展趋势预测
- 食堂设计投标方案(3篇)
- 产前筛查设备管理制度
- 初级意大利语教程课件
- DB13-T2321-2015-盐碱地高粱咸水直灌栽培技术规程-河北省
- 木工机械日常点检表
- 市域治理现代化的培训课件
- 专家解析:渲染,烘托等的区别课件
- 东方希望(三门峡)铝业有限公司煤焦油脱水技改项目环评报告
- 20S517 排水管道出水口
评论
0/150
提交评论