




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、精选优质文档-倾情为你奉上二次根式导学案第一课时 二次根式复习(1)已知,那么是的_;是的_ 记为_,一定是_数。(2)4的算术平方根为2,用式子表示为 =_;正数的算术平方根为_,0的算术平方根为_;式子的意义是 。自主学习(1)的平方根是 ;(2)一个物体从高处自由落下,落到地面的时间是t(单位:秒)与开始下落时的高度h(单位:米)满足关系式。如果用含h的式子表示t,则t= ;(3)圆的面积为S,则圆的半径是 ;(4)正方形的面积为,则边长为 。思考:, ,,等式子的实际意义.说一说他们的共同特征.定义: 一般地我们把形如()叫做二次根式,叫做_。 。1、试一试:判断下列各式,哪些是二次根
2、式?哪些不是?为什么?,2、当为正数时指的 ,而0的算术平方根是 ,负数 ,只有非负数才有算术平方根。所以,在二次根式中,字母必须满足 , 才有意义。3、根据算术平方根意义计算 :(1) (2) (3) (4)根据计算结果,你能得出结论: ,其中,4、由公式,我们可以得到公式= ,利用此公式可以把任意一个非负数写成一个数的平方的形式。如()2=5;也可以把一个非负数写成一个数的平方形式,如5=()2.练习:(1)把下列非负数写成一个数的平方的形式:6 0.35(2)在实数范围内因式分解 4a-11【例1】下列式子,哪些是二次根式,哪些不是二次根式:、(x0)、-、(x0,y0)【例2】当x是多
3、少时,+在实数范围内有意义? 【例3】已知y=+5,求的值若+=0,求a2012+b2012的值 练习:1、取何值时,下列各二次根式有意义? 2、(1)若有意义,则a的值为_ (2)若 在实数范围内有意义,则为( )。A.正数 B.负数 C.非负数 D.非正数3、(1)在式子中,的取值范围是_. (2)已知+0,则_. (一)填空题:1、 2、若,那么= ,= 。3、当x= 时,代数式有最小值,其最小值是 。4、在实数范围内因式分解:(1)( )2=(x+ )(x- ) (2)( )2=(x+ )(x- ) (二)选择题:1、一个数的算术平方根是a,比这个数大3的数为( ) A、 B、 C、
4、D、2、二次根式中,字母a的取值范围是( ) A、 al B、a1 C、a1 D、a1 3、已知则x的值为( ) A、 x-3 B、x0)反过来,=(a0,b0) 【例1】计算:(1) (2) (3) (4)【例2】化简:(1) (2) (3) 巩固练习1、计算:(1) (2) (3) (4)拓展延伸阅读下列运算过程:,数学上将这种把分母的根号去掉的过程称作“分母有理化”。利用上述方法化简:(1) =_ ()=_() =_ _ () =_ _测试:1、选择题 (1)计算的结果是( ) A B C D (2)化简的结果是( ) A- B- C- D-2、计算: (1) (2) (3) (4) 用
5、两种方法计算:(1) (2) 第三课时 最简二次根式复习(1)= (2)= (3) = (4)= 【例1】判断下列二次根式,哪些是最简二次根式?为什么?1 ;【例2】、化简:(1) (2) (3) (4) 例 3、计算: 例4、比较下列数的大小(1)与 (2)拓展延伸观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:,同理可得: =, 从计算结果中找出规律,并利用这一规律计算 (+)()的值(五)达标测试:1、选择题(1)如果(y0)是二次根式,化为最简二次根式是( ) A(y0) B(y0) C(y0) D都不对(2)化简二次根式的结果是 A、 B、- C、 D、- 2、填
6、空:(1)化简=_(x0 (2)已知,则的值等于_. 3、计算:(1) (2) 提高1、计算: (a0,b0)2、若x、y为实数,且y=,求的值。 3、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:=-1,=-,同理可得:=-,从计算结果中找出规律,并利用这一规律计算(+)(+1)的值二次根式的加减第一课时 二次根式的加减复习计算(1); (2); (3); (4)探索新知 学生活动:计算下列各式(1)2+3 = (2)2-3+5 =(3)+2+3 = (4)3-2+= 所以,二次根式加减时,可以先将二次根式化成最简二次根式,再将同类二次根式进行合并例1计算 (1)+ (2)+例2计算(1)3-9+3 ( 2)(+)+(-) 归纳: 第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并巩固练习(1) (2) (3) (4)课堂检测 1以下二次根式:;中,与是同类二次根式的是( ) A和 B和 C和 D和2下列各式:3+3=6;=1;+=2;=2,其中错误的有( ) A3个 B2个 C1个 D0个 3在下列各组根式中,是同类二次根式的是( )(A)和(B)和(C)和(D)和4下列各式
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年统编版小学语文三年级上册第四单元测试卷及答案(三套)
- 2025年保安考试试卷及答案
- 丹东无菌实验室施工方案
- 河道锚杆施工方案怎么写
- 丽水缙云县卫生健康系统招聘考试真题2024
- 石家庄外墙防水施工方案
- 防雨型金属桥架施工方案
- 泰安室外篮球场施工方案
- 上海酒店考试试题及答案
- 机场预防性试验施工方案
- 大圆满前行考试题及答案
- 2025贵州毕节威宁自治县面向社会招聘城市社区工作者17人考试参考试题及答案解析
- 建筑工地垃圾清理与处理方案
- 修井现场安全培训内容课件
- 2022届辽宁省大连市高三一模语文试题
- 企业后备干部培养及管理办法
- 2025年标准服装行业安全员考试题库及答案
- 2025年宜昌专业技术人员公需科目培训考试题及答案
- 山区道路施工施组
- 数控heidenhain说明书TNC直接提供两种加工孔模板的循环
- GB/T 42453-2023信息安全技术网络安全态势感知通用技术要求
评论
0/150
提交评论