第二章高等无机化学_第1页
第二章高等无机化学_第2页
第二章高等无机化学_第3页
第二章高等无机化学_第4页
第二章高等无机化学_第5页
已阅读5页,还剩68页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、第2章 分子对称性和群论基础整理pptn 掌握五种独立的对称操作及其对称元素n 掌握群的概念及其基本性质n 掌握点群的概念及化学中的重要点群n 了解对称性及群论在无机化学中的应用整理ppt什么是对称性?什么是对称性? 是指一个物体包含若干等同部分,这些部分相对(对是指一个物体包含若干等同部分,这些部分相对(对等、对应)而又相称(适合、相当)。等、对应)而又相称(适合、相当)。什么是分子对称性?什么是分子对称性? 如果分子各部分能够进行互换,而分子的取向没有产如果分子各部分能够进行互换,而分子的取向没有产生可以辨认的改变,这种分子就被说成是具有对称性。生可以辨认的改变,这种分子就被说成是具有对称

2、性。整理ppt 分子的对称性是分子的固有基本性质。因此利用对称分子的对称性是分子的固有基本性质。因此利用对称性原理探讨分子的结构和性质,是人们认识分子的重要途性原理探讨分子的结构和性质,是人们认识分子的重要途径,是了解分子结构与性质的重要方法。径,是了解分子结构与性质的重要方法。 对称性的概念和原理对化学研究的重要性表现为:对称性的概念和原理对化学研究的重要性表现为: 能简明地表达分子的构型能简明地表达分子的构型 可简化分子构型的测定工作可简化分子构型的测定工作 可帮助正确地了解分子的性质可帮助正确地了解分子的性质 能够指导化学合成工作能够指导化学合成工作整理ppt(1) 能简明地表达分子的构

3、型能简明地表达分子的构型 例如例如Ni(CN)42属于属于D4h点群,用点群,用D4h符号可以简洁、符号可以简洁、准确地表明准确地表明9个原子处于同一平面,个原子处于同一平面,Ni原子在离子的中原子在离子的中心位置,周围心位置,周围4个个CN完全等同,完全等同,MCN都是直线形,都是直线形,互成互成90o。整理ppt(2) 可简化分子构型的测定工作可简化分子构型的测定工作 将对称性基本原理用于量子力学、光谱学、将对称性基本原理用于量子力学、光谱学、X射线晶射线晶体学等测定分子和晶体结构时,许多计算可以简化,图像体学等测定分子和晶体结构时,许多计算可以简化,图像更为明确。更为明确。整理ppt(3

4、) 可帮助正确地了解分子的性质可帮助正确地了解分子的性质 分子的性质由分子的结构决定,分子的许多性质直接分子的性质由分子的结构决定,分子的许多性质直接与分子的对称性有关,正确地分析分子的对称性,能帮助与分子的对称性有关,正确地分析分子的对称性,能帮助我们正确地理解分子的性质。我们正确地理解分子的性质。整理ppt(4) 能够指导化学合成工作能够指导化学合成工作 反映分子中电子运动状态的分子轨道,具有特定的对反映分子中电子运动状态的分子轨道,具有特定的对称性,化学键的改组和形成,常需要考虑对称性匹配的因称性,化学键的改组和形成,常需要考虑对称性匹配的因素,许多化合物及生物活性物质,其性质与分子的绝

5、对构素,许多化合物及生物活性物质,其性质与分子的绝对构型有关。因此合成化合物,特别是具有一定生物活性的化型有关。因此合成化合物,特别是具有一定生物活性的化合物,需要考虑对称性因素。合物,需要考虑对称性因素。整理ppt 群论是一个很宽阔的数学领域,是研究对称性的有力工群论是一个很宽阔的数学领域,是研究对称性的有力工具。群论已经成为化学研究的一个不可缺少的方法,分子结具。群论已经成为化学研究的一个不可缺少的方法,分子结构、晶体结构、量化研究离开群论是难以想象的。构、晶体结构、量化研究离开群论是难以想象的。 晶体场理论几乎是与群论一起发展起来的。化学家因晶晶体场理论几乎是与群论一起发展起来的。化学家

6、因晶体场解释配合物光谱才对这一理论发生兴趣,这也是化学家体场解释配合物光谱才对这一理论发生兴趣,这也是化学家对群论发生兴趣最初的动力。对群论发生兴趣最初的动力。一、对称操作和对称元素二、群及其基本性质三、化学中重要的点群四、群论在无机化学中的应用整理ppt第一节 对称操作和对称元素 在讨论分子对称性时,经常涉及到的两个概念是在讨论分子对称性时,经常涉及到的两个概念是“对称操对称操作作”和和 “对称元素对称元素”。分子的对称性分子的对称性 如果分子各部分能够进行互换,而分子的取向没有产生可如果分子各部分能够进行互换,而分子的取向没有产生可以辨认的改变,这种分子就被说成是具有对称性。以辨认的改变,

7、这种分子就被说成是具有对称性。整理ppt第一节 对称操作和对称元素在保持任意两点间距离不变的条件下,使在保持任意两点间距离不变的条件下,使分子内部各部分变换位置,而且变换后的分子内部各部分变换位置,而且变换后的分子整体又恢复原状。分子整体又恢复原状。指赖以进行对称操作的点、线、面(分别指赖以进行对称操作的点、线、面(分别称为对称中心、旋转轴和镜面)。称为对称中心、旋转轴和镜面)。整理ppt第一节 对称操作和对称元素 旋转旋转 旋转轴旋转轴 反映反映 镜面镜面 反演反演 对称中心对称中心 旋转反映旋转反映 旋转旋转 反映轴反映轴 恒等操作恒等操作有五种对称元素能够用于适当的独立分子的对称操作。有

8、五种对称元素能够用于适当的独立分子的对称操作。整理ppt第一节 对称操作和对称元素1.1 旋转旋转&旋转轴旋转轴 围绕通过分子的围绕通过分子的某一根轴转动某一根轴转动2 /n使使分子复原,该操作称分子复原,该操作称为旋转。为旋转。 旋转操作的对称旋转操作的对称元素称为旋转轴,用元素称为旋转轴,用Cn表示。表示。 分子的较高重旋分子的较高重旋转轴通常取作转轴通常取作 z 轴。轴。整理ppt第一节 对称操作和对称元素1.2 反映反映&镜面镜面 通过某一镜面将分子的各点通过某一镜面将分子的各点反映到镜面另一侧位置相应处反映到镜面另一侧位置相应处使使分子复原,该操作称为反映。分子复原,该操作称为反映。

9、 反映操作的对称元素称为镜反映操作的对称元素称为镜面,用面,用 表示。表示。与主轴垂直的镜面:与主轴垂直的镜面: h通过主轴的镜面:通过主轴的镜面: v通过主轴且平分两副轴夹角的通过主轴且平分两副轴夹角的镜面:镜面: d整理ppt第一节 对称操作和对称元素1.3 反演反演&对称中心对称中心 分子中每一原子都沿直线通过分子中每一原子都沿直线通过分子中心移动,达到这个中心的另分子中心移动,达到这个中心的另一边的相等距离处使分子复原,该一边的相等距离处使分子复原,该操作称为反演。操作称为反演。 反演操作的对称元素称为对称反演操作的对称元素称为对称中心,用中心,用i表示。表示。 平面正方形的PtCl4

10、2 四面体SiF4不 具有对称中心 具对称中心整理ppt第一节 对称操作和对称元素1.4 旋转反映旋转反映&旋转旋转 反映轴反映轴 先绕一根轴旋转先绕一根轴旋转2 /n,再按垂直该轴的镜面进行反映,分子能够复,再按垂直该轴的镜面进行反映,分子能够复原,该操作称为旋转反映,原,该操作称为旋转反映,该操作是旋转和反映的联合操作。该操作是旋转和反映的联合操作。 旋转反映操作的对称元素称为旋转反映轴,旋转反映操作的对称元素称为旋转反映轴,用用Sn表示。表示。整理ppt第一节 对称操作和对称元素1.5 恒等操作恒等操作 保持分子中任意点的位置不变,该操作称为恒等操作,用符号保持分子中任意点的位置不变,该

11、操作称为恒等操作,用符号E表示。表示。 一切分子都具有这个对称元素。因为对分子不作任何动作,这个一切分子都具有这个对称元素。因为对分子不作任何动作,这个分子的状况是不会改变的。似乎这个元素是个毫无价值的对称元素,分子的状况是不会改变的。似乎这个元素是个毫无价值的对称元素,但因群论计算中要涉及它,所以必须包括该操作。但因群论计算中要涉及它,所以必须包括该操作。整理ppt第二节 群及其基本性质 群论是一门比较抽象的数学学科,但它与现代化学结合后,群论是一门比较抽象的数学学科,但它与现代化学结合后,就成为研究原子、分子和晶体结构的强有力的工具。就成为研究原子、分子和晶体结构的强有力的工具。整理ppt

12、第二节 群及其基本性质 数学上,群是由一定结合规则(称为乘法)联系起来数学上,群是由一定结合规则(称为乘法)联系起来的元素的集合。的元素的集合。 若干个固定元素的全体,在数学上称为集合,用符号若干个固定元素的全体,在数学上称为集合,用符号G a, b, 表示。在一个非空集合表示。在一个非空集合G中,当某种代数运算中,当某种代数运算(乘法)规定后,若集合满足(乘法)规定后,若集合满足封闭性封闭性、结合律成立结合律成立、存在存在一恒等元素一恒等元素、存在逆元素存在逆元素等四条性质时,则称等四条性质时,则称G构成一个构成一个群。群。整理ppt第二节 群及其基本性质1. 封闭性封闭性 若若aG, bG

13、, 则必有则必有ab = C, CG2. 结合律成立结合律成立 若若a、b、cG, 则则a(bc) = (ab)c3. 存在一恒等元素存在一恒等元素 若若aG, EG, 则则Ea = aE = a,E称为恒等元素称为恒等元素4. 存在逆元素存在逆元素 若若aG, 则必有则必有bG, 并使得并使得ab = ba = E 这里这里b为为a的逆元素,记作的逆元素,记作a1 = b整理ppt第二节 群及其基本性质 在一个分子上所进行的对称操作的完全集合构成一个在一个分子上所进行的对称操作的完全集合构成一个“对称操作群对称操作群”或或“点群点群”,分子可以按,分子可以按 “对称操作群对称操作群”或或“点

14、群点群”加以分类。加以分类。 点群具有一定的符号点群具有一定的符号:如如C2、C2v、D3h、Oh、Td等。等。其中任何具有一条其中任何具有一条C2轴,轴,2个对称面和恒等操作这四种对个对称面和恒等操作这四种对称操作组合的分子属于称操作组合的分子属于 C2v“点群点群”。H2O分子及分子及H2S分子分子就属于就属于C2v点群。点群。整理ppt第二节 群及其基本性质封闭性:封闭性: 任何两个对称操作的乘积必定为该群的一个任何两个对称操作的乘积必定为该群的一个 对称操作。对称操作。恒等元素:恒等元素:任何点群都含有一恒等操作任何点群都含有一恒等操作E,它和点群中,它和点群中 任一对称操作的乘积即为

15、该对称操作本身。任一对称操作的乘积即为该对称操作本身。结合律:结合律: (AB)C = A(BC)逆元素:逆元素: 点群中的对称操作都有相应的逆元素。点群中的对称操作都有相应的逆元素。 如:点群中有一操作如:点群中有一操作C2(逆时针旋转(逆时针旋转2 /2) 同时也存在同时也存在C21 (逆时针旋转(逆时针旋转2 /2)整理ppt第二节 群及其基本性质 群论是系统研究群的性质和应用的一门学科。在群论群论是系统研究群的性质和应用的一门学科。在群论研究中常用研究中常用“特征标表特征标表” 表示群。表示群。 点群的性质集中体现在特征标表中,特征标表既代表点群的性质集中体现在特征标表中,特征标表既代

16、表体系的各种性质在对称操作作用下的变换关系,也反映各体系的各种性质在对称操作作用下的变换关系,也反映各对称操作相互间的关系。这是群论的重要内容,在化学汇对称操作相互间的关系。这是群论的重要内容,在化学汇总有着重要应用。总有着重要应用。整理ppt第二节 群及其基本性质 一个体系的物理量在该体系所属的点群的对称操作作用一个体系的物理量在该体系所属的点群的对称操作作用下发生变换,如果变换的性质可以用一套数字来表示,这种下发生变换,如果变换的性质可以用一套数字来表示,这种表示就称作为表示就称作为特征标表示特征标表示,其中的每个数字称作,其中的每个数字称作特征标特征标。 如果这套数字还可以进一步约化(分

17、解),就称为如果这套数字还可以进一步约化(分解),就称为可约可约表示表示;否则就称为;否则就称为不可约表示不可约表示。整理ppt第二节 群及其基本性质例:如果把例:如果把H2S分子作为一个整体,以分子作为一个整体,以C2v点群的每一个对点群的每一个对称操作作用在称操作作用在H2S分子上,都能使分子上,都能使H2S分子复原(与原自身分子复原(与原自身无区别)。如果用数学的表述法则是,每一个对称操作对无区别)。如果用数学的表述法则是,每一个对称操作对于于H2S分子的作用相当于乘以一个分子的作用相当于乘以一个“1”,即:,即:对称操作 E C2 xz yz对于整个H2S分子的作用 1 1 1 1注:

18、注:yz平面取作分子平面平面取作分子平面整理ppt第二节 群及其基本性质 但并非与但并非与H2S分子有关的所有的物理量也都像分子有关的所有的物理量也都像H2S分子分子本身一样,能被本身一样,能被C2v点群的所有操作复原。如对于硫原子点群的所有操作复原。如对于硫原子的的2py、2px、2pz轨道,在轨道,在C2v点群的操作作用下,得到如点群的操作作用下,得到如下结果:下结果:对称操作 E C2 xz yz对于硫原子2py轨道的作用对于硫原子2px轨道的作用对于硫原子2pz轨道的作用 1 1 1 1 1 1 1 1 1 1 1 1注:注:z轴为最高旋转轴(主轴),轴为最高旋转轴(主轴),x轴垂直于

19、分子平面。轴垂直于分子平面。整理ppt第二节 群及其基本性质 由变换过程可知,由变换过程可知,H2S分子中硫原子上的分子中硫原子上的2px、2py、2pz轨道的不同对称性质,可以分别用不同的一套数字来表示。轨道的不同对称性质,可以分别用不同的一套数字来表示。即具有不同对称性质的物理量给出不同的一套数字。即具有不同对称性质的物理量给出不同的一套数字。整理ppt第二节 群及其基本性质 但前面但前面3套数字还不能完全描述套数字还不能完全描述H2S分子的所有各种物分子的所有各种物理量的对称性质。如硫原子的理量的对称性质。如硫原子的3dxy轨道的对称性,尚需下轨道的对称性,尚需下面一套数字来表示。面一套

20、数字来表示。对称操作 E C2 xz yz对于硫原子3dxy轨道的作用 1 1 1 1整理ppt第二节 群及其基本性质 由此可以得到由此可以得到4套数字,汇列于表中。套数字,汇列于表中。C2v E C2 xz yzA1A2B1B2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 12pz (S)3dxy (S)2px (S)2py (S) 每行数字的右边列出了用以获得此套数字的轨道或向每行数字的右边列出了用以获得此套数字的轨道或向量,称为变换的基。量,称为变换的基。可以证明,不可能再找到硫原子的另可以证明,不可能再找到硫原子的另一原子轨道或是一原子轨道或是H2S的另一物理量,它的对

21、称性质需用第的另一物理量,它的对称性质需用第五套数字来描述。五套数字来描述。整理ppt第二节 群及其基本性质习题:习题:试证明试证明H2S分子中下列各组轨道的对称性相同:分子中下列各组轨道的对称性相同:2s (S)、3dz2 (S)、3dx2-y2 (S)的对称性与的对称性与2pz (S)相同;相同;3dxz (S)的对称性与的对称性与2px (S)相同;相同;(1) 3dyz (S)的对称性与的对称性与2py (S)相同。相同。整理ppt第二节 群及其基本性质 利用前面利用前面4套数字就组成了一个特殊的表套数字就组成了一个特殊的表特征标表。特征标表。若用变量代替上表中的原子轨道,则得到若用变

22、量代替上表中的原子轨道,则得到C2v特征标表的一般形特征标表的一般形式。式。C2v E C2 xz yzA1A2B1B2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1Z, X2, Y2, Z2XYX, XZY, YZ整理ppt第二节 群及其基本性质1. 群乘法表群乘法表 将点群中各对称操作的乘法关系制成表,就得到群将点群中各对称操作的乘法关系制成表,就得到群乘法表。乘法表。2. 特征标与对称操作的关系特征标与对称操作的关系 每套(每一行)特征标数字都是对称操作集的一个每套(每一行)特征标数字都是对称操作集的一个表示,并且特征标表中的每一行为一个不可约表示。表示,并且特征标表中

23、的每一行为一个不可约表示。整理ppt第二节 群及其基本性质C3v E 2C3 3vA1A2E 1 1 1 1 1 1 2 1 0ZRZ(X, Y) (Rx, Ry)X2+Y2, Z2(X2-Y2, XY), (XZ, YZ)点群的熊夫利符号点群的熊夫利符号为归类的群元素(操作类)。为归类的群元素(操作类)。C3前前的的2和和 v前的前的3分别为该类操作的阶,分别为该类操作的阶,代表属于该类对称操作的数目。代表属于该类对称操作的数目。群的不可约群的不可约表示的马利表示的马利肯符号。肯符号。群的不可约表示的特征标,它群的不可约表示的特征标,它具体说明右边列出的表示的基具体说明右边列出的表示的基向量

24、的变换方式。向量的变换方式。整理ppt第二节 群及其基本性质马利肯符号代表的意义所有一维表示标记为所有一维表示标记为A或或B;二维表示标记为;二维表示标记为E;三维表示;三维表示标记为标记为T(有时用(有时用F);四维表示为);四维表示为G;五维表示为;五维表示为H。对于绕主轴对于绕主轴Cn旋转旋转2 /n角度,对称的一维表示角度,对称的一维表示(即即 (Cn)=1)标记为标记为A,反对称的,反对称的 (即即 (Cn)=1)标记为标记为B。1. A和和B的下标的下标1或或2用来分别标志它们对于垂直于主轴的用来分别标志它们对于垂直于主轴的C2轴轴是对称(标记为是对称(标记为1)或是反对称(标记为

25、)或是反对称(标记为2)的。)的。A1又特别又特别称作全对称表示。如果没有这种称作全对称表示。如果没有这种C2轴,轴,1和和2就标志它们对就标志它们对于竖直对称面于竖直对称面 v是对称的或反对称的。是对称的或反对称的。C3v中中A2是指对于是指对于 v而言是反对称的。而言是反对称的。 整理ppt第二节 群及其基本性质马利肯符号代表的意义字母上附加的一撇或两撇,分别用来指出它们对于字母上附加的一撇或两撇,分别用来指出它们对于 h是对是对称的称的( )抑或反对称抑或反对称( )的。的。在有反演中心的群中,下标在有反演中心的群中,下标g(来自德文(来自德文gerade,意思是偶,意思是偶数)表示对于

26、反演是对称的;下标数)表示对于反演是对称的;下标u(来自德文(来自德文ungerade,意思是非偶数)表示对于反演是反对称的。意思是非偶数)表示对于反演是反对称的。4. 对于对于E和和T,下标数字的用法也遵循一定的规则,在此不赘,下标数字的用法也遵循一定的规则,在此不赘述。述。整理ppt第三节 化学中重要的点群Cs点群仅含有一种对称元素,即镜面。整理ppt第三节 化学中重要的点群这类点群惟一的对称元素是一个n重旋转轴。整理ppt第三节 化学中重要的点群Cnv点群除有n重旋转轴外,还有n个通过旋转轴的镜面v或d。整理ppt第三节 化学中重要的点群Cnh点群除有n重旋转轴外,还有一个水平镜面h。整

27、理ppt第三节 化学中重要的点群Dn点群除有Cn主轴外,在主轴垂直方向上还有n个C2轴。Dnh点群除有Dn点群对称元素外,还有一个水平镜面h。整理ppt第三节 化学中重要的点群整理ppt第三节 化学中重要的点群Dnd点群除有Dn点群对称元素外,还有一套平分每一对C2轴间夹角的垂直镜面。整理ppt整理ppt第三节 化学中重要的点群旋转旋转-反映的联合操作反映的联合操作整理ppt第三节 化学中重要的点群正四面体分子或离子所属点群整理ppt第三节 化学中重要的点群 (总结)点群 对称元素 (未包括恒等元素) 举例Cs 仅有一个对称面 ONCl, HOClC1 无对称性 SiFClBrICn 仅有一根

28、n重旋转轴 H2O2, PPh3Cnv n重旋转轴和通过该轴的镜面 H2O, NH3Cnh n重旋转轴和一个水平镜面 反N2F2Cv 无对称中心的线性分子 CO,HCNDn n重旋转轴和垂直该轴的n根C2轴 Cr(C2O4)33Dnh Dn的对称元素、再加一个水平镜面 BF3,PtCl42Dh 有对称中心的线性分子 H2, Cl2Dnd Dn的对称元素、再加一套平分每一C2轴的垂直镜面 B2Cl4,交错C2H6Sn 有唯一对称元素(Sn映轴) S4N4F4Td 正四面体分子或离子,4C3、3C2、3S4和6d CH4, ClO4Oh 正八面体分子或离子,3C4、4C3、6C2、6d、3h、i

29、SF6Ih 正二十面体,6C5、10C3、15C2及15 B12H122整理ppt分子h ?Cn ?直线型 ?取最高阶Cn T,Th,Td,O,Oh是是否两个或多个Cn(n3) ?Cvi ?Dh是是否否nC2 Cn 是否Cnv是 h ?nd ?否Dnh是Dnd否Dn否否Cnh是Cnnv ?S2n?否是S2n ?i ?否否否C1Ci是Cs是第三节 化学中重要的点群分子所属点群的判断流程分子所属点群的判断流程整理ppt分子h ?Cn ?直线型 ?取最高阶Cn T,Th,Td,O,Oh是是否两个或多个Cn(n3) ?Cvi ?Dh是是否否nC2 Cn 是否Cnv是 h ?nd ?否Dnh是Dnd否D

30、n否否Cnh是Cnnv ?S2n?否是S2n ?i ?否否否C1Ci是Cs是BFClBr 一个平面三角形分子,存在一个对称元素,即分子所在的平面(无主轴,有一个对称面),属于Cs点群。BFClBr SiFClBrI 这个分子除恒等元素E之外,既无旋转轴,也无对称面,也没有对称中心,属于C1点群。SiFClBrI第三节 化学中重要的点群整理ppt分子h ?Cn ?直线型 ?取最高阶Cn T,Th,Td,O,Oh是是否两个或多个Cn(n3) ?Cvi ?Dh 是是否否nC2 Cn 是否Cnv是 h ?nd ?否Dnh是Dnd否Dn否否Cnh是Cnnv ?S2n?否是S2n ?i ?否否否C1Ci是

31、Cs是NH3 一个角锥形分子,具有一根三重旋转轴,但没有垂直于该轴的C2 轴,没有水平镜面,但有三个通过主轴的垂直面,因而它属于C3v点群。反反N2O22 离子有平面形的结构,有一根对称轴(垂直于离子平面的C2),没有映轴, 没有垂直于对称轴的C2轴,但有一个水平面,因此属于C2h点群。CH4 正四面体分子,有四根C3,没有C4轴, 有旋转反映轴,没有对称中心,故属于Td点群。整理ppt第2章 分子对称性和群论基础一、对称操作和对称元素二、群及其基本性质三、化学中重要的点群四、群论在无机化学中的应用整理ppt第四节 群论在无机化学中的应用 分子性质是由分子中化学键和分子空间结构,也即对称性分子

32、性质是由分子中化学键和分子空间结构,也即对称性决定的,应用群论方法研究分子对称性,可以预言化合物的偶决定的,应用群论方法研究分子对称性,可以预言化合物的偶极矩、旋光性和异构体等;极矩、旋光性和异构体等; 原子和分子轨道也具有特定的对称性,应用群论方法研究原子和分子轨道也具有特定的对称性,应用群论方法研究原子和分子轨道的对称性,可以深入了解化学键的形成、分子原子和分子轨道的对称性,可以深入了解化学键的形成、分子光谱的选律以及化学反应的机理等;光谱的选律以及化学反应的机理等; 晶体学中的点群和空间群是群论中的一种群,运用群论数晶体学中的点群和空间群是群论中的一种群,运用群论数学原理讨论晶体学中的点

33、群、空间群等问题,可以使晶体学中学原理讨论晶体学中的点群、空间群等问题,可以使晶体学中的一些重要问题得到透彻而深入的解释。的一些重要问题得到透彻而深入的解释。整理ppt第四节 群论在无机化学中的应用l分子的对称性与偶极矩分子的对称性与偶极矩l分子的对称性与旋光性分子的对称性与旋光性l化学反应中的轨道对称性化学反应中的轨道对称性l群论在晶体学中的应用群论在晶体学中的应用整理ppt第四节 群论在无机化学中的应用一 分子的对称性与偶极矩 若分子的正负电荷中心重合,则表示分子的偶极矩等于若分子的正负电荷中心重合,则表示分子的偶极矩等于零;若分子的正负电荷不重合,则分子就具有偶极矩。零;若分子的正负电荷

34、不重合,则分子就具有偶极矩。具有具有永久偶极矩的分子为极性分子永久偶极矩的分子为极性分子。 偶极矩有大小,偶极矩越大,分子的极性越强;偶极矩偶极矩有大小,偶极矩越大,分子的极性越强;偶极矩具有方向性,它是一个向量;偶极矩同时也是一个静态物理具有方向性,它是一个向量;偶极矩同时也是一个静态物理量,分子的静态物理量在任何对称操作下都不应该有变化,量,分子的静态物理量在任何对称操作下都不应该有变化,否则分子便没有得到复原。否则分子便没有得到复原。整理ppt第四节 群论在无机化学中的应用一 分子的对称性与偶极矩 凡具有对称中心或具有对称元素公共交点的分子没有偶凡具有对称中心或具有对称元素公共交点的分子

35、没有偶极矩。极矩。 因为对称中心是一个点,一个点代表的向量大小为零;因为对称中心是一个点,一个点代表的向量大小为零;同时因为一个向量不能同时与两个不同的轴重合,也无法同同时因为一个向量不能同时与两个不同的轴重合,也无法同时坐落在一个轴和与之相交的面上,因此所有含有对称元素时坐落在一个轴和与之相交的面上,因此所有含有对称元素的公共交点的分子偶极矩为零,分子无极性。的公共交点的分子偶极矩为零,分子无极性。整理ppt第四节 群论在无机化学中的应用一 分子的对称性与偶极矩 如果分子只有一个如果分子只有一个Cn(n1)轴,或只有一个轴,或只有一个 对称面,或对称面,或者一个者一个Cn轴包含在一个对称面轴

36、包含在一个对称面 内,都可能有偶极矩。例如内,都可能有偶极矩。例如H2O和和NH3分子都有偶极矩,均为极性分子。分子都有偶极矩,均为极性分子。 虽然虽然C=O键的偶极矩为键的偶极矩为2.3 D,但,但CO2分子的永久偶极矩分子的永久偶极矩为零,因为它具有对称中心为零,因为它具有对称中心i。 CCl4分子虽无对称中心分子虽无对称中心i,但它的,但它的4个个C3轴与轴与3个个C2轴在轴在碳原子处交于一点,因此它的永久偶极矩为零。碳原子处交于一点,因此它的永久偶极矩为零。整理ppt第四节 群论在无机化学中的应用 分子的偶极矩分子的偶极矩被用来衡量分子极性的大小。对于多原子分子,被用来衡量分子极性的大

37、小。对于多原子分子,它的偶极矩它的偶极矩就是分子中所有分偶极矩的矢量和就是分子中所有分偶极矩的矢量和。 以水分子为例,其结构是以水分子为例,其结构是O以以sp3不等性杂化轨道与两个不等性杂化轨道与两个H形成形成两条两条键,键角键,键角104o21,在氧上有两对孤电子对。,在氧上有两对孤电子对。水分子的偶极矩主要由两部分所确定:水分子的偶极矩主要由两部分所确定: H2O 键键(电负性电负性) 孤电子对孤电子对一 分子的对称性与偶极矩整理ppt第四节 群论在无机化学中的应用键偶极矩 键: 由键的极性所确定。键的极性和成键原子的电负性有关,键偶极矩(矢量)的方向由电负性小的原子到电负性大的原子, 其

38、大小与电负性差有关,电负性差越大,偶极矩也就越大。因此键(电负性): O H 3.5 2.1 两条氢氧键偶极矩矢量加和产生的水分子的键偶极矩矢量的方向是由H到O。整理ppt第四节 群论在无机化学中的应用 孤电子对产生的偶极矩 孤电子对,由于孤电子对集中在原子的某一侧面,因而该原子的这个侧面就集中了过多的负电荷,因而将产生偶极矩: 孤电子对: :O H 键偶极矩和孤电子对偶极矩具有同样的方向(总方向是H方为正,O方为负) H2O键(电负性)() 孤电子对()1.85 D ()整理ppt第四节 群论在无机化学中的应用再如NH3与NF3 NH3: :N3.0H2.1 孤电子对:, 键(电负性): ,

39、 二者方向相同(H方向为正 NH),NH3的偶极矩较大; NF3: :N3.0F4.0 孤电子对:, 键(电负性): , 二者方向相反,由于 键(电负性) 孤电子对,部分抵销的结果,NF3的偶极矩较小,方向是N方为正(NF) 。整理ppt第四节 群论在无机化学中的应用二 分子的对称性与旋光性 旋光性旋光性,亦称为光学活性,它是当偏振光射入某些物质,亦称为光学活性,它是当偏振光射入某些物质后其振动面要发生旋转的性质。后其振动面要发生旋转的性质。 当物质的分子,其构型具有手征性,亦即分子的构型与当物质的分子,其构型具有手征性,亦即分子的构型与它的镜像不能重合,犹如左右手的关系,这种物质就具有旋它的

40、镜像不能重合,犹如左右手的关系,这种物质就具有旋光性。光性。整理ppt第四节 群论在无机化学中的应用二 分子的对称性与旋光性 分子旋光性与分子对称性密切相关。分子具有旋光性的分子旋光性与分子对称性密切相关。分子具有旋光性的条件是条件是分子不具备任意次旋转分子不具备任意次旋转-反映轴反映轴Sn。因为不具备。因为不具备Sn轴的轴的分子与其镜像在空间不能由任何旋转和平移操作使之重合。分子与其镜像在空间不能由任何旋转和平移操作使之重合。一般称不具有一般称不具有Sn轴的分子为不对称分子,所有不对称分子都轴的分子为不对称分子,所有不对称分子都具有旋光性。具有旋光性。整理ppt (a)顺式Co(en)2Cl

41、2+ (b)反式Co(en)2Cl2+ 具有旋光性 没有旋光性由于由于S1= ,S2=i,因此凡具有,因此凡具有 和和i对称元素的分子无旋光性。对称元素的分子无旋光性。第四节 群论在无机化学中的应用整理ppt第四节 群论在无机化学中的应用三 化学反应中的轨道对称性 化学键的形成与否取决于参与成键的轨道的对称性,具化学键的形成与否取决于参与成键的轨道的对称性,具有相似对称性的相互作用有利于反应的发生,即是允许的反有相似对称性的相互作用有利于反应的发生,即是允许的反应,对称性不同的相互作用是禁阻的反应。应,对称性不同的相互作用是禁阻的反应。 对于一个双分子的反应,在反应时,在前线轨道中的电对于一个

42、双分子的反应,在反应时,在前线轨道中的电子流向是由一个分子的最高占据分子轨道子流向是由一个分子的最高占据分子轨道(HOMO)流向另一流向另一个分子的最低未占据轨道个分子的最低未占据轨道(LUMO)。整理ppt第四节 群论在无机化学中的应用三 化学反应中的轨道对称性 H2与与I2的反应在的反应在1967年以前被认为是一个典型的双分子年以前被认为是一个典型的双分子反应:反应:H2和和I2通过侧向碰撞形成一个梯形的活化配合物,然通过侧向碰撞形成一个梯形的活化配合物,然后,后,I-I键和键和H-H 键同时断裂,键同时断裂,H-I键伴随着生成。键伴随着生成。 如果如果H2与与I2进行侧向碰撞进行侧向碰撞

43、, 则它们的分子轨道可能有两则它们的分子轨道可能有两种相互作用方式:种相互作用方式:整理ppt第四节 群论在无机化学中的应用三 化学反应中的轨道对称性(1) H2分子的最高占据分子轨道即分子的最高占据分子轨道即s与与I2分子的最低未占据分分子的最低未占据分子轨道即子轨道即z*相互作用相互作用:这些轨道对称性不同,净重叠为这些轨道对称性不同,净重叠为0,反应是禁阻的。,反应是禁阻的。整理ppt第四节 群论在无机化学中的应用三 化学反应中的轨道对称性(2) 由由I2分子的最高占据分子轨道分子的最高占据分子轨道 *(p)与与H2分子的最低未占据分子的最低未占据分子轨道分子轨道 s*相互作用相互作用:这种作用,轨道对称性匹配,净重叠不为零。但从能量这种作用,轨道对称性匹配,净重叠不为零。但从能量看,电子的流动是无法实现的。这是因为:看,电子的流动是无法实现的。这是因为:l 如果电子从如果电子从I2分子的反键分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论