




下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、三角形的内角和说课稿一、说教材今天我说课的内容是小学数学苏教版实验教材四年级下册的 三角形的内角 和。三角形的内角和是 180°是三角形的一个重要性质,也是“空间与图形” 领域中的重要内容之一, 学好它有助于学生理解三角形内角之间的关系, 也是进 一步学习几何知识的基础。三角形是常见的一种图形, 在平面图形中, 三角形是最简单的多边形, 也是 最基本的多边形。 学生对三角形已经有了直观的认识, 能够从平面图形中分辨出 三角形,还认识了三角形的特性, 知道三角形任意两边之和大于第三边以及三角 形的分类等有关三角形的知识。这些都是学生感受、理解、抽象“三角形的内角 和”的概念的基础。我们
2、把握好“三角形的内角和是 180°”这部分内容的教学 不仅可以加深学生对三角形特征的理解, 发展学生的空间观念, 而且可以通过动 手操作,获取新知, 发展学生的思维能力和解决实际问题的能力。 同时也为以后 学习更复杂的几何图形知识打下坚实的基础。二、说教学目标:1、知识目标:知道三角形内角和是 180°。2、能力目标:通过学生测量、 撕拼、折叠、观察等活动, 培养学生探索、 发现能力、 观察能力和动手操作能力。能运用三角形内角和是 180°这一规 律解决实际问题。3、情感目标:让学生在探索活动中产生对数学的好奇心,发展学生的空 间观念; 体验探索的乐趣和成功的快乐
3、,增强学好数学的信心。三、说重点和难点:重点:探索和发现三角形内角的度数和等于 180°。难点:通过小组讨论、 动手操作等方式, 让学生自己探索和发现三角形内角 的度数和等于 180°,并能应用这一规律解决实际问题。四、说教法和学法 新课程标准的基本理念就是要让学生“人人学有价值的数学” 。强调“教学 要从学生已有的经验出发, 让学生亲身经历将实际问题抽象成数学模型并进行解 释与应用的过程。 要激发学生的学习积极性, 向学生提供充分从事数学活动的机 会,让他们积极主动地探索,解决数学问题,发现数学规律,获得数学经验。因 此,我主要采用的教学方法是:直观教学法和动手操作实验法
4、。在教学中,根据学生的年龄特征,整节课我以学生为主的 “活动教学”贯 穿全过程。设计有独立活动、同桌活动及分小组活动。在具体活动中,虽然小学 生的遗忘性较强, 但不得不承认学生学过了三角形的内角和, 所以一开始我大胆 放手让学生说, 从学生说中导入故事,“三角形三兄弟的争吵” ,引出与学生要学 习的内容三角形的内角, 然后设疑: 三角形内角和是多少?由于学生在小学 学过这样的知识, 所以很轻松地就可以答出。 所以我直接让学生分小组讨论: 有 什么办法可以验证得出这样的结论。让学生大胆猜想,自主探索三角形的内角和。再通过测量、拼折、验证等方 式让学生确定三角形内角和是 180 度。这样,既培养了
5、学生的观察能力和归纳概 括能力,又培养了学生动手操作能力和创新精神。五、说教学过程本节课的教学过程我设计了六个教学环节: 一是创设情境, 导入新课; 二是 自主探究,证实规律;三是应用延伸,解决问题;四是深化思维,拓展知识;五 是课堂总结;六是作业布置。下面就具体的教学环节说说我的设想。(一)创设情境,导入新课 教学的艺术不在于传授知识,而在于唤醒、激发和鼓励。开始上课,我就大 胆放手让学生说三角形的特性、分类等有关知识,从学生说中导入故事, “三角 形三兄弟的争吵”,引出与学生要学习的内容三角形的内角和,然后设疑: 三角形内角和是多少?从而激发学生探究数学的愿望和兴趣。(二)自主探究,证实规
6、律1、理解标目:学生有了探索的愿望和兴趣,可是不能没有目标的去探索, 那样只会事倍功半, 甚至没有结果, 所以一开始我先不急于动手探索, 先让学生 明白什么是三角形的内角和。2、猜想:目标明确后,我就让学生大胆猜想,形成统一的认识,使后边的 探索和验证活动有了明确的目标。3、验证自主探索 :学生形成统一的猜想 即三角形的内角和等于 180 度 后,我就把课堂大量的时间和空间留给学生, 让他们开展有针对性的数学探究活 动既验证三角形的内角和是否是 180 度?,在活动中,我既不像过去那样告诉 学生怎么动手去验证, 让学生做机械的操作员, 不是随意放开让学生盲目的操作, 而是把放和引有机的结合,
7、鼓励学生积极开动脑筋, 从不同的途径探索解决问题 的方法。不但让每个学生自主参与验证活动,而且使学生在经历观察、操作、分 析、推理和想象活动过程中解决问题, 发展空间观念和论证推理能力。 具体过程 为:量量、拼一拼、折一折说说、议议小结。4、巩固内化:俗话说的好: “熟能生巧”。 数学离不开练习,要掌握知识,形成技能技巧,一定要通过练习。养成良好 的思维品质也要通过一定的思考练习, 课程标准提倡练习的有效性。 对此,我非 常注意将数学的思考融入不同层次的练习之中, 很好的发挥练习的作用, 如:根 据普遍三角形两个角求一个角,根据特殊的三角形求出三角形的三个角的度数, 从中发展学生的空间观念和空
8、间想象能力。这些练习设计目的明确, 针对性强, 使学生不但巩固了知识, 更重要的是数 学思维得到不断的发展。5、拓展创新:数学具有严密的逻辑性和抽象性。 学生学习内容的呈现是从简单到复杂, 思维方式是从具体到抽象的一个循序 渐进的过程, 前面学习的知识往往是后面进一步学习的基础。 要培养学生思维的 灵活性,可以先让学生学会对知识的迁移。 本课最后, 我给学生出了一道通过对 本节课所学知识的迁移就可以完成的问题, 对学生进行思维训练, 既培养了学生 应用知识的能力,又培养了学生的创新意识和创新精神。6、说课堂总结 采用用先让学生归纳补充,然后教师再补充的方式进行: (1)这节课我们学了什么知识?
9、你有什么收获?(2)看书设疑。 充分发挥学生的主体意识,培养学生的语言概括能力。六说教学板书这是一节操作课, 学生要掌握的概念较少, 所以整个板书我以表格为主, 主 要把学生大量的验证成果展示出, 让学生亲自动手后再通过观察, 一目了然, 得 出结论三角形的内角和是 180度。简间但又层层涉及, 形式活泼, 色彩也较丰富总之,本节课教学活动中我力求充分体现一下特点: 以学生发展为本, 以学 生为主体, 思维为主线的思想; 充分关注学生的自主探究与合作交流; 练习体现 了层次性,知识技能得于落实和发展。三角形的内角和说课稿今天我说课的内容是人教版九年义务教育小学数学四年级下册第五单元第67 页的
10、三角形的内角和。根据王敏勤教授的授课七步法, 即说教材,说学情, 说目标,说模式,说方法,说设计,说板书,我将进行本课的说课。一、说教材“三角形的内角和” 是新课标人教版四年级下册第五单元第三节的内容。 本 节课是在学生学过角的度量、三角形的特征和分类等知识的基础上进行教学的, “三角形的内角和” 是三角形的一个重要性质, 学好它有助于学生理解三角形内 角之间的关系,也是进一步学习几何的基础。仔细分析教材的知识结构,它是分成 3 个部分来呈现的。第一部分是让学生通过量一量、 算一算,初步感知三角形的内角和是 180°; 第二部分是通过拼角的实验来探究并归纳三角形内角和的规律; 第三部
11、分是运用规律、解决问题。教材这样编排由发现问题, 到验证问题, 再到运用规律, 充分体现了知识结 构的有序性和强烈的数学建模思想, 既符合四年级学生的认知规律, 又突出了本 课教学的重点。二、说学情1. 通过前面的学习,学生已经掌握了三角形的一些基础知识, 会用工具量角、 画角,具备了探索三角形内角和的知识与基础技能。2.学生的生活经验是可利用的教学资源。 我在课前了解到, 已经有不少学生 知道了三角形内角和是 180 度,但却不知道怎样才能得出这个结论, 因此学生在 这节课上的主要目标是验证三角形的内角和是 180 度。三、说目标根据小学数学教学大纲对四年级学生的具体要求, 结合教材特点及学
12、生年龄 特征,将本节课的目标制定为以下几点:认知技能:学生动手操作,在猜想后通过量、剪、拼、折的方法,探索并发 现"三角形内角和等于 180 度"的规律。数学思考: 在操作实验中, 让学生感受图形的转化过程及数学建模思想, 初 步培养学生的空间思维观念。解决问题: 在运用知识解决问题的过程中, 感受所学知识的重要性, 初步培 养学生的应用意识。情感态度:通过各种实验活动,激发学习兴趣,体验学习成功感,并在教学 中,感受生活与数学的密切联系。将运用各种实验方法探究三角形内角和为 180度的过程并掌握规律, 运用规 律解决实际问题确定为本节课的教学重点。 而同时学生难以理解不易
13、掌握的探究 规律的全过程则是本节课的教学难点。四、说模式“三角形的内角和” 一课,知识与技能目标并不难, 我认为本节课更重要的 是通过自主探索与合作交流使学生经历知识的形成过程, 领悟转化思想在解决问 题中的应用,以及在探索过程中,培养学生实事求是、敢于质疑的科学态度,同 时合作交流中,开拓思维、提升能力。基于以上理念,本节课,我准备引导学生 采用自主探究、猜想验证、合作探究的学习模式。体现“以学生的发展为本”这 一教育理念。五、说方法本节课主要是通过教师的精心引导和点拨 , 学生在小组中合作探索 , 通过量 一量, 折一折,撕一撕,画一画,选择不同的一种或者几种方法来验证三角形的内 角和是
14、180 度。因为课程标准明确指出: “要结合有关内容的教学 , 引导学生进行观察 , 操作,猜想,培养学生初步的思维能力” 。四年级学生经过第一学段以及本单元的 学习,已经掌握了三角形的分类 ,比较熟悉平角等有关知识; 具备了初步的动手操 作,主动探究的能力 , 他们正处于由形象思维向抽象思维过渡的阶段。 因此,本节 课,我将重点引导学生从“猜测验证”展开学习活动 ,让学生感受这种重要的 数学思维方式。六、说设计根据我对教材的把握和对学情的了解,设计了 4 个环节展开教学。一、创设情境,发现问题小游戏:猜一猜藏在信封后面的是什么三角形。 师:我们在猜三角形的时候, 看到一个直角,就能断定它一定
15、是直角三角形; 看到一个钝角, 就能断定他一定是钝角三角形; 但只看到一个锐角, 就判断不出 来是哪种三角形。 看来在一个三角形中, 只能有一个直角或一个钝角, 为什么画 不出有两个直角或两个钝角的三角形呢?三角形的这三个角究竟存在什么奥秘呢,我们一起来研究研究。(创设的不是生活中的情境, 而是数学化的情境。 有的孩子认为一个三角形 中可能会有两个钝角, 还有的提出等边三角形中可能会有直角, 这两个问题显现 出学生在认知上的矛盾,学生用已经学的三角形的特征只能解释 "不能是这样 ", 而不能解释 " 为什么不能是这样 " 。这样引入问题恰好可以利用学生的
16、这种认知冲 突,激发学生的学习兴趣,让学生在疑问与猜想中寻找验证的方法。 )第二环节 - 引导探究二、动手操作,探究规律 1介绍内角、内角和,并提出猜想 师:我们现在研究三角形的三个角,都是它的内角。 课件演示:三角形的三个内角 师:今天我们就来一起探究三角形的内角和 。猜一猜其它三角形的内角 和是多少度呢?同桌互相说说自己的看法。2确定研究范围 师:研究三角形的内角和, 是不是应该包括所有的三角形?只研究黑板上这 一个行不行?那就随便画,挨个研究吧。 (学生反对)请你想个办法吧!(通过引导学生分析, "研究哪几类三角形, 就能代表所有的三角形 " 这个问 题,来渗透研究问
17、题要全面,也就是完全归纳法的数学思想)3建立模型,解决问题(一)测量法:(1)学生自然想到要量出三角形每个角的度数就能够求出三角形的内角和, 从而证明三角形的内角和与三角形的大小和形状没有关系都接近180 度。(2)教师要组织学生进行小组合作每人用量角器量出一种三角形(锐角三 角形、钝角三角形、直角三角形)的三个内角并计算出它们的总和是多少?3)记录小组测量结果及讨论结果(4)学生汇报量的方法,师请同学评价这种方法。 师小结:直接量的方法挺好,虽然测量有误差,不准,但我们能知道,三角 形的内角和只能在 180°左右,究竟是不是一定就是 180 度呢,谁还有别的方法? (二)剪拼法 学
18、生汇报后师小结: 能想到这个方法不简单, 拼成的看起来像平角, 到底是 不是平角呢,我们一起来试试看。 (教师和学生剪一剪、拼一拼) 师:把三角形的三个内角凑到了一起, 拼成了一个大角, 角的两条边是不是 在一条直线上呢?看起来挺象的, 但在操作的过程中难免会产生误差, 有时会差 一点点,谁还有别的方法确定三角形的内角和一定是 180°?三)折拼法学生汇报后师小结:我们要研究三角形的内角和,实际上就是想办法把三 角形的三个内角凑到一起,像剪和折的方法,看三个内角拼到一起是不是 180 度,都是借助我们学过的平角解决的问题。这三种方法都不错,在操作的过程中,有时会有误差,不太有说服力。
19、想一想,你还能不能借助我们学过的哪种图形,想办法说明三角形的内角和一定是180 度?(四)演绎推理法(借助学过的长方形,把一个长方形沿对角线分成两个三角形。 ) 师:你认为这种方法好不好?我们看看是不是这么回事。(演示课件:两个完全相同的三角形内角和等于 360°,一个三角形内角和 等于 180°)师小结:这种方法避免了在剪拼过程中由于操作出现的误差, 非常准确的说 明了三角形的内角和一定是 180 度。(学生通过小组合作的方式学到方法, 分享经验,更重要的是领悟到科学研 究问题的方法。就学生的发展而言,探究的过程比探究获得的结论更有价值。 ) 学生用的方法会非常多,但它们
20、的思维水平是不平行的。直接测量法是学生利用已有的知识,测量出每个角的度数,再用加法求和; 拼角求和法,也就是间接剪拼和折拼这两种方法, 都是通过拼成一个特殊角, 也就是平角来解决问题;而演绎推理法,即把两个完全相同的三角形合二为一, 或把长方形一分为二, 成为两个三角形,这是更深层次的思考。前两种方法是不完全归纳法,能使我们确定研究的范围只能是 180 度左右, 而不可能是其他任意猜想的度数。 最后一种方法具有演绎推理的色彩, 把一个长 方形沿对角线分成两个完全相同的三角形后, 因为两个三角形的内角和是原来长 方形的四个内角之和 360 度,所以一个三角形的内角和就是 360°
21、47; 2180°, 这种方法从科学证明的角度阐述了三角形的内角和,它有严密性和精确性。【本节课引导学生经历从直观到抽象、 思维程度从低到高的过程, 感悟数学 的严谨性。 让学生在经历量和拼之后, 逐渐会在思维发散的过程中得到集中, 集 中为分的方法,最后将四边形一分为二, 五边形一分为三, 六边形一分为四, 又会发现一些新的规律。 】4验证猜想 "三角形的内角和是 180 度"5进一步感受(1)三角形内角和与三角形大小的关系教师出示一个小三角形, 问学生内角和是多少度?再出示一个大的等腰三角 形,问学生它的内角和是多少度?把这个大三角形平均分成两份, 每份内角和是 多少度?你有
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 江西省抚州市本年度(2025)小学一年级数学统编版专题练习(上学期)试卷及答案
- 电机原理及应用模拟题(含答案)
- 安徽省安庆市达标名校2025届高考仿真模拟英语试卷含解析
- 评茶员(中级)考试模拟题(含参考答案)
- 云南省保山市重点中学2025届高三考前热身英语试卷含解析
- 皮革制品的品牌推广考核试卷
- 耐火土石矿山环境保护与矿山环境保护教育培训考核试卷
- 船用氧气与乙炔设备安全操作考核试卷
- 淀粉与变性淀粉在食品中的应用考核试卷
- 生物技术前沿与未来趋势考核试卷
- 供货合同终止申请书范本
- 中国军力报告2023全文
- 深圳市南山区教育系统招聘公办幼儿园园长考试题库2023
- 【管理会计在华为公司中的应用现状、问题及优化建议分析9600字(论文)】
- 家长会课件:七年级家长会班主任优质课件
- 《认识面积》说课稿定稿
- 设卡堵截示范作业教案
- 浙教版-信息技术-必修1-32-python-语言的程序设计-课件(教学课件)
- 医院单位氧气使用检查记录表
- 顶管工程施工应急预案27615
- 《预防血管内导管相关血流感染过程质控工具包》解读
评论
0/150
提交评论