第六章 圆周运动(共31页)_第1页
第六章 圆周运动(共31页)_第2页
第六章 圆周运动(共31页)_第3页
第六章 圆周运动(共31页)_第4页
第六章 圆周运动(共31页)_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、 第六章:圆周运动:匀速圆周运动(yndng) 一、教学(jio xu)目标 1知道(zh do)什么是匀速圆周运动 2理解什么是线速度、角速度和周期 3理解线速度、角速度和周期之间的关系 二、教学重点、难点 重点: 1理解线速度、角速度和周期 2什么是匀速圆周运动 3线速度、角速度及周期之间的关系难点: 对匀速圆周运动是变速运动的理解教学过程(一)导入新课 演示机器式钟表时针、分针、秒针的运动情况,(让学生观察圆周运动)接下来总结出不同指针的运动情况(快慢)从而引出圆周运动的概念:指物体沿着圆周的运动即物体运动的轨迹是圆。学生举例:电风扇的转动、车轮的转动、运动场上的运动员、地球的自转和公转

2、等等研究物体运动时,我们往往关心的是物体的运动快慢,对于直线运动,我们用速度来描述物体的运动快慢,(单位时间内通过的位移的大小)问题:对于圆周运动有如何描述他们运动快慢呢?推进新课线速度 1 定义:质点做圆周运动通过的弧长l和所用时间t的比值叫做线速度。(比值定义法) 2 定义(dngy)式:v=l/ t 单位(dnwi):m/s(l是弧长,非位移(wiy)) 当选取的时间t很小很小时(趋近零),弧长l就等于物体在t时刻的位移,定义式中的v,就是直线运动中学过的瞬时速度了。 3 物理意义:描述质点沿圆周运动的快慢. 4 方向:质点在圆周某点的线速度方向就是沿圆周上该点的切线方向。5 当相等时间

3、内通过的弧长相等,即线速度大小处处相等,就是匀速圆周运动说明:匀速圆周运动的匀速指的是线速度大小不变,但方向在改变,所以匀速圆周运动是变速运动。角速度(反应快慢还可以从相等时间内转过的角度来比较) 1 定义:在匀速圆周运动中,连接运动质点和圆心的半径转过的角度跟所用时间t的比值,就是质点运动的角速度; 2 定义式:=/ t = 单位是弧度每秒(rads) 3 物理意义:描述质点转过圆心角的快慢 例题:.时针、分针和秒针转动时,下列正确说法是 A.秒针的角速度是分针的60倍 B.分针的角速度是时针的60倍 C.秒针的角速度是时针的360倍 D.秒针的角速度是时针的86400倍周期(T)转一周所用

4、的时间单位:S讨论线速度、角速度、周期的关系 一物体做半径为r的匀速圆周运动,它运动一周所用的时间叫周期,用T表示 则线速度v=l/ t = =/ t = 因此可得V=R(说明他们正反比的关系)例题 .下列关于甲乙两个做圆周运动的物体的有关说法正确的是 A.它们线速度相等,角速度一定相等 B.它们角速度相等,线速度一定也相等C.它们周期相等,角速度一定也相等 D.它们周期相等,线速度一定也相等总结:1皮带上各个点以及两轮边缘(binyun)上各点在相同的时间内通过的弧长相等,即线速度大小相等 2 共同转动轴在相同时间内转过角度(jiod)相等,即角速度相等课堂作业5分钟训练(xnlin)(预习

5、类训练,可用于课前)1.从水平匀速飞行的飞机上,先落下物体a,再经过1 s落下物体b,若不计空气阻力,在落地前a物体将在( )A.b的前方 B.b的后方C.b的正下方 D.无法确定答案:C2.对于做匀速圆周运动的物体来说,不变的物理量是( )A.周期 B.频率C.角速度 D.线速度答案:ABC3.在圆周运动中下列说法正确的是( )A.线速度较大的物体,角速度一定也较大B.由公式=可知,做圆周运动半径大的物体,角速度一定小C.飞轮转动的角速度越大,轮上同一点的线速度也越大D.由公式r=可知,物体转动的半径与它的线速度大小成正比答案:C4.下列关于匀速圆周运动的说法中正确的是( )A.速度不变的运

6、动B.角速度不变的运动C.角速度不断变化的运动D.相对圆心位移不变的运动答案:B10分钟训练(强化类训练,可用于课中)1.关于角速度、线速度和周期,下面的说法中正确的是( )A.半径一定,角速度与线速度成反比B.半径一定,角速度与线速度成正比C.线速度一定,角速度与半径成正比D.不论半径等于多少,角速度与周期始终成反比答案:BD2.静止在地球上的物体都要随地球一起转动,下列说法正确的是( )A.它们的运动周期都是相同的B.它们(t men)的线速度都是相同的C.它们的线速度大小(dxio)都是相同的D.它们(t men)的角速度是不同的解析:如图所示,地球绕自转轴转动时,所有地球上各点的周期及

7、角速度都是相同的.地球表面物体做圆周运动的平面是物体所在纬度线平面,其圆心分布在整条自转轴上,不同纬度处物体做圆周运动的半径是不同的,只有同一纬度处的物体转动半径相等,线速度的大小才相等,但即使物体的线速度大小相同,方向也各不相同.答案:A3.一台准确走时的钟表上的时针、分针和秒针上的角速度之比123=_;如果三针长度分别为L1、L2、L3且L1L2L3=11.51.5,那么三针尖端的线速度之比v1v2v3=_.解析:钟表上三针的转动情况是,时针转一圈用时12 h,即它的周期为T112 h.分针转一圈用时1 h,即它的周期为T2=1 h.秒针转一圈用时1 min,即它的周期为T3= h.因为=

8、,所以123=112720;又因为v=L,则123=112720,v1v2v3=1181 080.答案:112720 1181 0804.如图6-5-1所示的传动装置中,B、C两轮固定在一起绕同一轴转动,A、B两轮用皮带传动,三轮的半径关系是ra=rc=2rb.若皮带不打滑,求A、B、C轮边缘的a、b、c三点的角速度之比和线速度之比分别为_和_.图6-5-1解析:A、B两轮通过皮带传动,皮带不打滑,则A、B两轮边缘的线速度大小相等.即va=vb由v=r得cb=rbra=12B、C两轮固定在一起绕同一轴转动,则B、C两轮的角速度相同,即b=c由v=r得vbvc=rbrc=12.由得abc=122

9、.由得vavbvc=112.答案:122 1125.如图6-5-2所示为测定子弹速度的装置,两个薄圆盘分别装在一个迅速转动的轴上,两盘平行.若圆盘以3 600 r/min的转速旋转,子弹沿垂直圆盘方向射来,先打穿第一个圆盘,再打穿第二个圆盘,测得两盘相距1 m,两盘上被子弹穿过的半径夹角为15,则子弹的速度大小为_m/s.图6-5-2解析(ji x):子弹两次穿过圆盘经过(jnggu)的时间t=,在这段时间内圆盘(yun pn)转过的角度+2k=t(k=0,1,2,3,)把=15代入计算得v= m/s,(k=0,1,2,3,).答案: (k=0,1,2,3,)30分钟训练(巩固类训练,可用于课

10、后)1.关于做匀速圆周运动的物体,下面的说法正确的是( )A.相等的时间里通过的路程相等B.相等的时间里通过的弧长相等C.相等的时间里发生的位移相等D.相等的时间里转过的角度相等答案:ABD2.甲、乙、丙三个物体,甲放在广州、乙放在上海、丙放在北京,当它们与地球一起转动时,则( )A.甲的角速度最大,乙的线速度最小B.丙的角速度最小,甲的线速度最大C.三个物体的角速度、周期和线速度都相等D.三个物体的角速度、周期一样,丙的线速度最小答案:D3.如图6-5-3所示,电风扇在闪光灯下运转,闪光灯每秒闪30次,风扇转轴O上装有3个扇叶,它们互成120角.当风扇转动时,观察者感觉扇叶不动,则风扇转速可

11、能是( )图6-5-3A.600 r/min B.900 r/min C.1 200 r/min D.3 000 r/min解析:风扇转动时,观察者感觉扇叶不动,说明在每相邻两次闪光的时间间隔T灯内,风扇转过的角度是120的整数倍,即圈的整数倍.T灯= s.风扇的最小转速nmin=10 r/s=600 r/min故满足题意的可能转速n=knmin(k=1,2,3,).匀速圆周运动是一种周期性的运动,分析此类问题,关键是抓住周期性这一特点,得出可能的多解通式.答案(d n):ACD4.如图6-5-4所示,当屏幕上出现一辆匀速奔跑的汽车时,观众如果(rgu)注意车辆的辐条,往往会产生奇怪的感觉.设

12、车轮(ch ln)上有八根对称分布的完全相同的辐条,电视画面每隔 s更换一帧,则下列说法正确的是( )图6-5-4A.若在 s内,每根辐条恰好转过45,则观众觉得车轮是不动的B.若在 s内,每根辐条恰好转过360,则观众觉得车轮是不动的C.若在 s内,每根辐条恰好转过365,则观众觉得车轮是倒转的D.若在 s内,每根辐条恰好转过355,则观众觉得车轮是倒转的解析:若 s内辐条正好转过45角,则辐条转到与它相邻的那根辐条位置,因而这时若更换一帧,则会使观众看到好像车轮不动一样,因为每根辐条相同,观众区分不开辐条的变化;同理,在 s内,若辐条转360,观众也会认为车轮不动,因而A、B正确.若 s内

13、,辐条转过365,则每根辐条在下一帧时出现在它转动方向前5的位置,因而这时观众会认为在这 s内,辐条向前转过5,所以观众会觉得车轮向前转动;若s内,辐条转过355时,则每根辐条在下一帧时,出现在与它转动方向相反的离它原位置的5处,因此,观众会觉得车轮在倒转,所以C错误,D正确,故选A、B、D.对于这类与生活相关联的题目,我们应该认真体会.另外,错觉方面的知识(即视觉就近原则),是解决本题的关键.因而对于研究性题目,应开放式联想,充分应用各种知识和经验,从而解决问题.答案:ABD5.为了使拖拉机在农田中较好地工作,中型拖拉机的后轮(主动轮)直径比前轮直径(从动轮)要大,某中型拖拉机前后轮直径之比

14、为25.设它在水平地面上匀速行驶时,前后轮都不打滑,则它行驶时前后轮转动的角速度之比为_.答案:526.半径为10 cm的转轮,每秒转5圈,则该转轮的周期T为_,在转轮的边沿某点A的角速度为_,线速度为_.解析(ji x):根据题意(t y),转轮每秒钟转5圈,则转一圈需要(xyo)的时间为 s=0.2 s;据公式可知,转轮的角速度为:=10 rad/s,也即转轮上某点A的角速度,A点的线速度的大小为:va=r=100.1 m/s= m/s=3.14 m/s.答案:0.2 s 10 rad/s 3.14 m/s7.(经典回放)如图6-5-5所示为一实验中利用光脉冲测量车速和行程的装置示意图,A

15、为光源,B为光电接收器,A、B均固定在车身上,C为小车的车轮,D为与C同轴相连的齿轮.车轮转动时,A发出的光束通过旋转齿轮上齿的间隙后变成脉冲光信号,被B接收并转换成电信号,由电子电路记录和显示.若实验单位时间内显示的脉冲数为n,累计脉冲数为N,则要测出小车的速度和行程还必须测量的物理量或数据是_;车速度的表达式v_;行程的表达式 s=_.图6-5-5解析:因为B在单位时间内接到的脉冲数为n,每个间隙转动的时间t=,设一周有P个齿,则有P个间隙,周期T=Pt=,据v=,可得v=,所以要求车速必须测量出车轮的半径R和齿轮数P.当脉冲总数为N时,则经过的时间t总=Nt=,所以行程s=vt总=.本题

16、是匀速圆周运动的规律在实际生活中的应用,根据脉冲信号的次数确定车轮的周期是解决问题的关键.根据要求的结论确定还要测定的其他物理量,实际上也是开放思维的体现,也是本题能力考查的方面.答案:车轮的半径R和齿轮数P 8.如图6-5-6所示,直径为d的纸制圆筒,使它以角速度绕其中心轴O匀速转动,然后使子弹沿直径穿过圆筒.若子弹在圆筒旋转不到半周时在圆筒上留下a、b两个弹孔,已知aO、bO夹角为,求子弹的速度为多大?图6-5-6解析:由图可知子弹穿过纸圆筒的时间内,纸圆筒转过的角度=-,则子弹穿过圆筒的时间t=;由于子弹在这段时间内的位移大小等于圆筒的直径d,所以子弹的速度大小v=.答案(d n):v=

17、9.观察自行车的主要传动部件,了解(lioji)自行车是怎样用链条传动来驱动后轮前进的,如图6-5-7所示,其中右下图是链条(lintio)传动的示意图,两个齿轮俗称“牙盘”.试分析并讨论: 图6-5-7(1)同一齿轮上各点的线速度、角速度是否相同?(2)两个齿轮相比较,其边缘的线速度是否相同?角速度是否相同?转速是否相同?(3)两个齿轮的转速与齿轮的直径有什么关系?你能推导出两齿轮的转速n1、n2与齿轮的直径d1、d2的关系吗?解析:(1)同一齿轮上各点绕同一轴转动,因而各点的角速度相同;但同一齿轮上各点,因到转轴的距离不相同,由v=r知,其线速度不同.(2)自行车前进时,链条不会脱离齿轮打

18、滑,因而两个齿轮边缘的线速度相同,角速度与半径成反比.角速度和转速n存在关系:=2n,两齿轮角速度不同,转速当然也不同.(3)因两齿轮边缘线速度相同,而线速度和角速度的关系是:v=r,=2n,故2n1r1=2n2r2,即n1d1=n2d2,转速与直径成反比.答案:(1)角速度相同,线速度不同;(2)线速度相同,角速度与转速不同;(3)成反比10.如图6-5-8所示,在男女双人花样滑冰运动中,男运动员以自己为转动轴拉着女运动员做匀速圆周运动,若男运动员的转速为30 r/min,女运动员触地冰鞋的线速度为4.7 m/s,求:图6-5-8(1)女运动员做圆周运动的角速度;(2)女运动员触地冰鞋做圆周

19、运动的半径.解析:根据男运动员的转速为30 r/min可知,女运动员的转速也是30 r/min,换算成角速度为:30 r/min=0.5 r/s= rad/s;在女运动员绕着男运动员做圆周运动的过程中,根据公式v=r,可以得到:r=1.5 m.答案:(1) rad/s (2)1.5 m11.一把雨伞边缘的半径为r,且高出水平地面h.当雨伞以角速度旋转时,雨点自伞的边缘甩出,在地面上形成一圆圈,则此圆圈的半径为多少?解析(ji x):由题意知,雨点在伞边缘的速度(sd)大小v=r,雨点(ydin)离开伞时,沿伞边缘的切线飞出,且飞出后做平抛运动.设其水平位移为s,则雨点落地圆半径R与伞半径r,以

20、及s的关系如图所示,则由平抛运动知识可得雨点飞行时间:t=,s=vt=r由图中关系,可得:R=答案:R=:向心力和向心加速度(2课时)教学目标1. 知道向心力及其方向,理解向心力的作用。2. 通过实验理解向心力的与哪些因素有关,掌握向心力的公式及其变形。3. 知道向心加速度,掌握向心加速度的公式及其变形。4. 能用牛顿第二定律知识分析匀速圆周运动的向心力。二、教学重点、难点 重点: 1 理解向心力和向心加速的概念。 2 知道向心力大小F=mr2= m2/r,向心加速度的大小a= r2= 2/r,并能用来进行计算。 难点:1匀速圆周运动的向心力和向心加速度都是大小不变,方向在时刻改变。 2能用牛

21、顿第二定律来解答匀速圆周运动的问题教学过程 引入新课地球(dqi)绕着太阳运动,地球受到的力。细绳拉着小球(xio qi)在光滑水平面上做圆周运动,小球受到的力。这两个(lin )力有什么特别呢?(指向圆心)今天我们就来学习向心力向心力 1 定义:做匀速圆周的物体受到一个指向圆心合力的作用,这个力叫做向心力 2 方向:沿半径指向圆心,且向心力是变力 3 作用效果:只改变线速度方向,不改变其大小特别注意:不是质点做圆周运动才产生向心力,而是由于向心力的存在迫使质点不断改变其速度方向而做圆周运动向心力的大小让学生猜想向心力大小与哪些因素有关?实验研究F向与m、r、的关系实验方法:控制变量法介绍向心

22、力演示的构造和使用方法 (3)实验过程 a:质量不同的钢球和铝球,当它们运动的半径r和角速度相同时,比较向心力的大小 b:两个质量相同的小球,保持运动半径相同,观察向心力与角速度之间的关系 c:两个质量相同的小球,保持小球运动的角速度相同,观察向心力的大小与运动半径之间的关系。实验表格二球相同的物理量不同的物理量观察结果1 r、 mm越大,F向越大2 m、 rr越大,F向越大3 m、r 越大,F向越大实验结论:F向随r、w、m的增大而增大(4)总结得到:向心力的大小与物体质量m、圆周半径r和角速度都有关系,且给出公式:F向mr2m2/r例题有长短不同,材料相同的同样粗细的绳子,各拴着一个质量相

23、同的小球在光滑水平面上做匀速圆周运动,那么( B )A两个小球以相同的线速度运动时,长绳易断B两个小球以相同的角速度运动时,长绳易断C两个球以相同的周期运动时,短绳易断D不论如何,短绳易断向心(xin xn)加速度根据前面的学习我们知道,合力与加速度具有相同的方向,即向心力和向心加速度都是沿着(yn zhe)半径指向圆心,根据牛顿第二定律F向man=mr2m2/r .可得an=r2=2/r .(有学生需要(xyo),就证明) 1、定义:做匀速圆周运动的物体,加速度指向圆心,这个加速度叫做向心加速度物理意义:描述线速度方向变化快慢的物理量(因为向心加速度始终指向圆心,与线速度方向垂直,所以向心加

24、速度只改变线速度的方向,不改变其大小) 例题: 甲、乙两物体都在做匀速圆周运动,以下各种情况下哪个物体的向心加速度较大? A它们的线速度相等,乙的半径小 B它们的周期相等,甲的半径大C它们的角速度相等,乙的线速度小 D它们的线速度相等,在相同的时间内甲与圆心的连线扫过的角度比乙的大(四)生活中的圆周运动接下来请同学们思考以下4个问题:系着绳子的小球在水平面上做匀速圆周运动,其圆心在哪里,受到几个力的作用?向心力是什么?系着绳子的小球在竖直平面上做匀速圆周运动,小球在最高点、最低点的受力情况如何?(3)在圆柱筒内附有一物块,圆柱筒绕其轴线做匀速转动,则物块受到哪些力的作用?(4)使转台匀速转动,

25、转台上的物体也随之做匀速圆周运动,转台与物体间没有相对滑动,物体受到哪些力的作用?向心力由什么提供的?(如图3)(如图4)(如图1)(如图2)讲评以上的3个问题,得出几点说明:向心力的来源:做匀速圆周运动的物体所需要(xyo)的向心力就是物体所受的合力a的方向(fngxing)不断变化,所以匀速圆周运动是瞬时加速度的方向不断变化的变速运动向心力是一个效果力,可以是一个力,也可能是几个力的合力(hl)或某个力的分力,不能认为物体受到一些力作用外,还另外受到向心力。例题:1把一个小球放在玻璃漏斗中,晃动漏斗,可以使小球沿光滑的漏斗壁在某一水平面内做匀速圆周运动。小球的向心力是由什么提供的? 2 调

26、查公路拐弯处的倾斜情况或铁路拐弯处两条轨道的高度差异。课堂作业5分钟训练(预习类训练,可用于课前)1.一物体以4m/s的线速度做匀速圆周运动,转动周期为2s,则物体在运动过程的任一时刻,速度变化率的大小为( )A.2m/s2 B.4m/s2 C.0 D.4 m/s2答案:D2.下列说法中正确的是( )A.匀速圆周运动是一种匀速运动B.因为物体做圆周运动,所以才产生向心力C.因为总有指向圆心的外力存在,所以才迫使物体不断改变运动速度方向而做圆周运动D.因为向心力的方向总与线速度方向垂直,所以向心力对做圆周运动的物体不做功答案(d n):CD3.在水平路面上安全转弯(zhun wn)的汽车,向心力

27、是( )A.重力(zhngl)和支持力的合力B.重力、支持力和牵引力的合力C.汽车与路面间的静摩擦力D.汽车与路面间的滑动摩擦力答案:C4.一物体在半径为6m的圆周上,以6 ms的速度做匀速圆周运动,所需的向心力为12 N,则物体的质量m_.解析:本题考查应用向心力的公式解决实际问题,向心力的公式为:F=m,可得到物体的质量m= kg=2 kg.答案:2 kg10分钟训练(强化类训练,可用于课中)1.一个做匀速圆周运动的物体若保持其半径不变,角速度增加为原来的2倍时,所需的向心力比原来增加了60N,物体原来所需的向心力是_ N.答案:202.下列关于物体的运动说法正确的是( )A.物体在恒力作

28、用下,一定做直线运动B.做匀速圆周运动的物体可能处于平衡状态C.物体在变力作用下有可能做匀速圆周运动D.物体在恒力作用下不可能做匀速圆周运动答案:CD3.如图6-7-1所示,一圆盘可绕通过圆盘的中心O且垂直于盘面的竖直轴转动.在圆盘上放置一小木块A,它随圆盘一起运动做匀速圆周运动,如图所示.则关于木块A的受力,下列说法正确的是( )A.木块A受重力、支持力、静摩擦力和向心力B.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相反 C.木块A受重力、支持力和静摩擦力,摩擦力的方向指向圆心D.木块A受重力、支持力和静摩擦力,摩擦力的方向与木块运动方向相同图6-7-1答案:C4.质量为m的

29、汽车,在半径为20m的圆形水平路面上行驶,最大静摩擦力是车重的0.5倍,为了不使轮胎在公路上打滑,汽车速度不应超过_ms.(g取10m/s2)解析(ji x):质量(zhling)为m的汽车(qch),在半径为20 m的圆形水平路面上行驶时,静摩擦力提供向心力,最大静摩擦力对应汽车行驶的最大速度,所以有:kmg=m,得:v= m/s=10 m/s.答案:105.如图6-7-2所示,半径为R的洗衣筒,绕竖直中心轴OO转动,小橡皮块a靠在圆筒内壁上,它与圆筒的动摩擦因数为.现要使a不下落,则圆筒转动的角速度至少为_.图6-7-2解析:对于小橡皮块,刚好不下落,则可得到水平方向和竖直方向上物体运动的

30、方程,竖直方向上:mg=FN,水平方向上:FN=m2R,联立得:=答案:30分钟训练(巩固类训练,可用于课后)1.关于向心力的说法中正确的是( )A.物体受到向心力的作用才能做圆周运动B.向心力是指向圆心方向的力,是根据力的作用效果命名的C.向心力可以是重力、弹力、摩擦力等各种力的合力,也可以是某种力的分力D.向心力只改变物体的运动方向,不可能改变物体运动的快慢答案:ABCD2.一辆汽车在丘陵地带匀速行驶,地形如图6-7-3所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是( )图6-7-3A.a处 B.b处 C.c处 D.d处解析:只有向心力大处,且支持力大于重力处轮胎易爆炸,由图知在b

31、点时r小,故N-mg=m,N=mg+m;在a、c点,N+mg=m,故N=m-mg;d点:N=mg,故正确选项为B.答案(d n):B3.如图6-7-4所示,长为L的悬线固定(gdng)在O点,在O点正下方处有一钉子(dng zi)C,把悬线另一端的小球m拉到跟悬点在同一水平面上无初速度释放,小球到悬点正下方时悬线碰到钉子.则小球的( )图6-7-4A.线速度突然增大 B.角速度突然增大C.向心加速度突然增大 D.悬线拉力突然增大解析:小球由最高点运动到最低点的过程中,绳子的拉力不做功,只有重力对小球做功,小球的机械能守恒,也就是说在小球的悬线碰到钉子与没有碰到钉子时比较,小球在最低点时的速度是

32、相等的.对小球在最低点,由牛顿第二定律和向心力的公式可得:T-mg=m,对比两种情况,只是半径r不同,因此没碰钉子时绳子的拉力比碰到钉子时的拉力要小,D正确.根据=可知,没碰钉子时小球的角速度比碰到钉子时小球的角速度要小,B正确.根据a=可知,没碰钉子时小球的向心加速度比碰到钉子时小球的向心加速度要小,C正确.答案:BCD4.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进入容器后靠筒壁站立,当圆筒开始转动后,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为( )A.游客受到筒壁垂直的压力作用 B.游客处于失重状态C.游客受到的摩擦力等于重力D.游客随着转速的增大

33、有沿壁向上滑动的趋势解析:游客随筒转动起来后,一起做圆周运动,当地板塌落游客没有落下去时,游客受重力、筒壁对游客的支持力和静摩擦力这三个力作用,其中静摩擦力和重力相平衡,支持力给游客做圆周运动提供向心力.题目所问是游客为什么没有落下去,故应选C选项,而非A选项.若题目问为什么又可做圆周运动则A选项正确.答案:C5.甲、乙两名溜冰运动员,m甲=80kg,m乙=40kg,面对面拉着弹簧秤做圆周运动的溜冰表演,如图6-7-5所示,两人相距0.9m,弹簧秤的示数为92 N.下列判断中正确的是( )A.两人的线速度相同(xin tn),约为40 ms B.两人的角速度相同(xin tn),约为6 rad

34、sC.两人的运动(yndng)半径相同,都是0.45 mD.两人的运动半径不同,甲为0.3 m,乙为0.6 m图6-7-5解析:甲、乙两名溜冰运动员在面对面拉着弹簧秤做圆周运动的溜冰表演时,弹簧秤的拉力提供运动员做圆周运动的向心力,由牛顿第二定律和向心力公式得:F=m甲r12,F=m乙r22,又r1+r2=l=0.9 m,解得:r1=0.3 m,r2=0.6 m,角速度为:= rad/s6 rad/s,所以B、D选项正确.答案:BD6.一根长0.5m的绳,当它受到4.9 N的拉力时,即被拉断.现在一端拴上一质量为0.4 kg的小球,使它在光滑水平面上做匀速圆周运动,求拉断绳子时物体的角速度.解

35、析:由题意可知小球受力情况如图所示,其中重力G与弹力N是一对平衡力,绳子的拉力F沿半径指向圆心,提供小球做匀速圆周运动所需的向心力.设绳被拉断时的角速度为,则有Fn=F=m2r所以= rad/s=4.95 rad/s.这是一动力学问题,知道物体的受力(临界状态,绳子刚好拉断)可求物体的加速度(根据牛顿第二定律),进一步求运动学的量.答案:4.95 rad/s7.如图6-7-6所示,飞机做俯冲运动时,在最低点附近做半径r180m的圆周运动,如果飞行员体重(质量)m70kg,飞机经过最低点P的速度v360kmh,求这时飞行员对座位的压力.图6-7-6解析:飞行员经过最低点时受两个力:重力G和座位对

36、他的支持力F,则F-G=m,所以F=G+m=709.8 N+70 N=4.57103 N.飞行员对座位的压力和座位给飞行员的支持力是一对作用力和反作用力,所以飞行员对座位的压力是F=F=4.57103 N.答案(d n):4.57103 N8.长为L的细线,拴一质量为m的小球,一端固定于O点.让其在水平面内做匀速圆周运动(这种运动通常称为圆锥摆运动),如图6-7-7所示.求摆线L与竖直(sh zh)方向的夹角是时:(1)线的拉力(ll)F;(2)小球运动的线速度的大小;(3)小球运动的角速度及周期.图6-7-7解析:匀速圆周运动的小球受力如图所示,小球受重力mg和绳子的拉力F.因为小球在水平面

37、内做匀速圆周运动,所以小球受到的合力指向圆心O,且是水平方向.由平行四边形定则得:小球受到的合力大小为mgtan,线对小球的拉力大小为:F=mg/cos由牛顿第二定律得:mgtan=,由几何关系得r=Lsin所以小球做匀速圆周运动线速度的大小为v= 小球运动的角速度=小球运动的周期T=.答案:(1)F=mg/cos (2)v= (3)= T=9.一杂技演员骑摩托车沿一竖直圆轨道做特技表演,如图6-7-8所示,若车的速率恒为20ms,人与车质量之和为200 kg,轮胎与轨道间的动摩擦因数为0.1,车通过最低点A时,发动机功率为12 kW,求车通过最高点时发动机的功率.图6-7-8解析(ji x)

38、:杂技演员骑摩托车沿一竖直圆轨道(gudo)做匀速圆周运动,在最低点:N-mg=m,可以(ky)得到:N=mg+m=20010+200202r,又在最低点:P=Fv,得F= N=600 N.因为演员做匀速圆周运动,水平方向受力平衡,F=f;又因为f=N,联立以上各式解得:r=20 m;在最高点:mg+N=m,得N=m-mg=200-200 N10 N=2 000 N,摩托车的牵引力为:F=f=N=0.12 000 N=200 N,则车通过最高点时发动机的功率为:P=Fv=20020 W=4 000 W=4 kW.答案:4 kW10.(2006北京东城模拟,24)如图6-7-9所示,ABDO是处

39、于竖直平面内的光滑轨道,AB是半径为R=15m的1/4圆周轨道,半径OA处于水平位置,BDO是直径为15m的半圆轨道,D为BDO轨道的中央.一个小球P从A点的正上方距水平半径OA高H处自由落下到通过D点时对轨道的压力等于其重力的倍.(取g=10m/s2)求:图6-7-9(1)H的大小.(2)试讨论此球能否到达BDO轨道的O点,并说明理由.(3)小球沿轨道运动后再次落到轨道上的速度的大小是多少?思路分析:小球从H高处落下,进入轨道,沿BDO轨道做圆周运动,小球受重力和轨道的支持力.设小球通过D点的速度为v,通过D点时轨道对小球的支持力为F(大小等于小球对轨道的压力)是它做圆周运动的向心力,即mg

40、=m小球从P点落下直到沿光滑轨道运动的过程中,机械能守恒,有mg(H+)=mv2由式可得高度(god)H=R=10 m设小球能够(nnggu)沿竖直半圆轨道运动到O点的最小速率(sl)为vc,有m=mg小球至少应从Hc高处落下,mgHc=mvc2式可得Hc=,由于HHc,小球可以通过O点.小球由H落下通过O点的速率为v0=14.1 m/s小球通过O点后做平抛运动,设小球经时间t落到AB圆弧轨道上,建立直角坐标系,有x=v0ty=gt2且x2+y2=R2由可解得时间t=1 s(另解舍弃),落到轨道上速度的大小v=17.3 m/s.答案:(1)10 m (2)小球能通过O点 理由略 (3)17.3

41、 m/s:离心现象(xinxing)及应用教学(jio xu)目标知道什么(shn me)是离心现象,知道物体做离心运动的条件。能结合课本所分析的实际问题,知道离心运动的应用和防止。教学重点、难点 重点:物体做离心运动所满足的条件。 难点:对离心运动的理解及其实例分析教学过程(一)引入新课做圆周运动的物体,由于本身的惯性,总有沿着圆周切线方向飞去的倾向,它之所以没有飞去是因为向心力持续地把物体拉到圆周上来,使物体同圆心的距离保持不变。做匀速圆周运动的物体,它所受的合外力恰提供了它所需要的向心力,如果提供它的外力消失或不足,物体将怎样运动呢?本节课专门研究这一问题。(二)推进新课1、离心运动:学

42、生阅读教材【离心现象】做匀速圆周运动的物体,在所受的合力突然消失或者不足以提供圆周运动所需的向心力的情况下,就做逐渐远离圆心的运动。这种运动叫做离心运动。2离心运动的条件:当产生向心力的合外力突然消失,物体便沿所在位置的切线方向飞出。当产生向心力的合外力不完全消失,而只是小于所需要的向心力,物体将沿切线和圆周之间的一条曲线运动,远离圆心而去。 在离心机的水平转台上放一个物体,当转台的转速较小时,物体随转台一起做圆周运动,随着转台转速增加,当转速增加到某一值时,物体所受的最大静摩擦力已不足以提供所需的向心力,物块做离心运动。 当F=m2r时,物体(wt)做匀速圆周运动当F= 0时,物体(wt)沿

43、切线方向飞出当Fm2r时,物体逐渐远离(yun l)圆心当Fm2r时,物体逐渐靠近圆心3离心现象的本质物体惯性的表现做匀速圆周运动的物体,由于本身有惯性,总是想沿着切线方向运动,只是由于向心力作用,使它不能沿切线方向飞出,而被限制着沿圆周运动。如果提供向心力的合外力突然消失,物体由于本身的惯性,将沿着切线方向运动,这也是牛顿第一定律的必然结果。如果提供向心力的合外力减小,使它不足以将物体限制在圆周上,物体将做半径变大的圆周运动。此时,物体逐渐远离圆心,但“远离”不能理解为“背离”。做离心运动的物体并非沿半径方向飞出,而是运动半径越来越大 。 4、离心运动的应用和防止1.离心运动的应用实例雨伞旋

44、转链球投掷洗衣机的脱水筒2.离心运动的防止实例汽车拐弯时限速 (2)火车(huch)转弯限速例题(lt):如果(rgu)汽车的质量为m,水平弯道是一个半径50m的圆弧,汽车与地面间的最大静摩擦力为车重的0.2倍,欲使汽车转弯时不打滑,汽车在弯道处行驶的最大速度是多少?( g取10 m/s2 )(答案:10 m/s )课堂作业1下列哪些现象不是为了防止物体产生离心运动( )A汽车转弯时要限制速度B转速很高的砂轮半径不能做得太大C在修铁路时,转弯处轨道的内轨要低于外轨D离心水泵工作时2市内公共汽车在到达路口转弯前,车内广播中就要播放录音:“乘客们请注意,前面车辆转弯,请拉好扶手”这样可以( )A提

45、醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向前倾倒B提醒包括坐着和站着的全体乘客均拉好扶手,以免车辆转弯时可能向后倾倒C主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的外侧倾倒D主要是提醒站着的乘客拉好扶手,以免车辆转弯时可能向转弯的内侧倾倒3汽车车厢地板上放一货物,货物与车厢地板之间的摩擦力最大值是货物重力的0.2倍当汽车以5 m/s的速率匀速转过半径8 m的弯道时,从司机看来,货物将( )A仍然和车厢保持相对静止B向后方滑动C右转弯时货物从车的左后方滑下,左转弯时从车的右后方滑下D右转弯时货物从车的右后方滑下,左转弯时从车的左后方滑下4有关洗衣机脱水筒的问题,下列说法

46、中正确的是( )A如果衣服上的水太多,脱水筒就不能脱水B脱水筒工作时衣服上的水做离心运动,衣服并不做离心运动C脱水筒工作时筒内的衣服也会做离心运动,所以脱水筒停止工作时衣服紧贴在筒壁上D脱水筒停止工作后,衣服缠绕在一起是因为离心运动5一辆卡车在丘陵地匀速行驶,地形如图5所示,b处比d处平缓,由于轮胎太旧,爆胎可能性最大的地段应是( )图5Aa处 Bb处 Cc处 Dd处6(双选)洗衣机的脱水筒在工作时,有一衣物附着在竖直的筒壁上,则此时( )A衣物受重力、筒壁弹力和摩擦力作用B衣物随筒壁做圆周运动的向心力由摩擦力提供C筒壁的弹力随筒转速的增大而增大D筒壁对衣物(yw)的摩擦力随筒转速的增大而增大

47、7冰面对溜冰运动员的最大静摩擦力为运动员重力的k倍,在水平(shupng)冰面上沿半径为R的圆周滑行的运动员,其安全(nqun)速度为( )Avkeq r(Rg) Bv eq r(kRg)Cveq r(2kRg) Dv eq r(f(Rg,k)8(双选)用细绳拴着质量为m的物体,在竖直平面内做圆周运动,则下列说法正确的是( )A小球过最高点时,绳子张力可以为零B小球过最高点时的最小速度是零C小球过最高点时的速度veq r(gr)D小球过最高点时,绳子对小球的作用力可以与球所受重力方向相反9(双选)有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进入容器后靠筒壁站立当圆筒开始转动,转速加

48、快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是为什么( )A游客受到的筒壁的弹力垂直于筒壁B游客处于失重状态C游客受到的摩擦力等于重力D游客随着转速的增大有沿壁向上滑动的趋势10.图6长度为L0.50 m的轻质细杆OA,A端有一质量为m3.0 kg的小球,如图6所示,小球以O点为圆心在竖直平面内做圆周运动,通过最高点时小球的速率是2.0 m/s,g取10 m/s2,则此时细杆OA受到( )A6.0 N的拉力B6.0 N的压力C24 N的拉力D24 N的压力题 号12345678910答 案11.一辆质量为4 t的汽车驶过一半径为50 m的凸形桥面时,始终保持5 m/s的速率,汽车所

49、受的阻力为车对桥面压力的0.05倍求通过桥的最高点时汽车的牵引力是多大?(g取10 m/s2)12.图7如图7所示,半径为R、内径很小的光滑半圆形细管竖直(sh zh)放置,有两个质量均为m的小球A、B,以不同的速率进入(jnr)管内,若A球通过圆周最高点N时,对管壁上部压力为3mg,B球通过最高点N时,对管壁(un b)下部压力为eq f(mg,2),求A、B两球在N点的速度之比参考答案1D2C3C 0.2 mgeq f(mv2,r)eq f(5,16)mg,货物做离心运动,正确选项为C.4C 洗衣机脱水筒是应用离心运动的原理当脱水筒工作时,转速增大,使衣服及衣服上的水做离心运动,衣服由于离

50、心运动到筒壁,筒壁施加弹力提供衣服转动的向心力,衣服以后就不再做离心运动,而衣服上的水,做圆周运动只靠与衣服之间的吸附力,转速增大时,这个力不足以提供向心力,所以水做离心运动,脱水筒停止工作后,衣服缠绕在一起与离心运动无关故正确选项为C.5D 在凹形路面处支持力大于重力,且FNmgmeq f(v2,R).因v不变,R越小,FN越大,故在d处爆胎可能性最大6AC 对衣物研究,竖直方向:fmg.水平方向:FNmr2mr(2n)2.当转速增大时,摩擦力f不变,弹力FN增大7B 运动员做圆周运动所需的向心力由冰面对他的静摩擦力提供,要想做圆周运动,必须满足fmeq f(v2,R),而fmaxkmgf,

51、解得veq r(kRg).8AC 设球过最高点时的速度为vF合mgFT,又F合eq f(mv2,r),则mgFTeq f(mv2,r).当FT0时,veq r(gr),故A选项正确(zhngqu);当veq r(gr)时,FTeq r(gr)时,FT0,球能沿圆弧通过最高点可见,v eq r(gr)是球能沿圆弧过最高点的条件9AC 游客随圆筒做圆周运动,当地板塌落后,游客仍能紧贴器壁而不落下去,是因为筒壁对游客的弹力指向圆心并提供向心力,方向垂直于筒壁游客还受摩擦力和重力,在竖直方向上受力平衡,故A、C正确10B 设小球以速率v0通过最高点时,球对杆的作用力恰好为零,即mgmeq f(voal

52、(2,0),L),v0eq r(gL)eq r(100.50) m/seq r(5) m/s.由于v2.0 m/seq r(5) m/s,则过最高点时,球对细杆产生压力,如图所示,为小球的受力示意图,由牛顿第二定律得:mgFNmeq f(v2,L),即FNmgmeq f(v2,L)3.010 N3.0eq f(2.02,0.50) N6.0 N111 900 N解析 对汽车在拱形桥的最高点受力分析如图所示,由于车速不变,所以在运动方向上有Ff;汽车在桥的最高点时,车的重力和桥对车的支持力的合力是使汽车做圆周运动的向心力,方向竖直向下,根据牛顿第二定律有:mgFNmeq f(v2,r)由题意知f

53、kFN联立以上三式解得Fk(mgmeq f(v2,r)0.05(4103104103eq f(52,50) N1 900 N122 eq r(2)1解析(ji x) 对A球在最高点时受力分析(fnx)如图甲,则3mgmgmeq f(voal(2,A),R)得vA2 eq r(gR)对B球在最高点时受力分析(fnx)如图乙,则mgeq f(1,2)mgeq f(mvoal(2,B),R),得:vBeq f(1,2)eq r(2gR),故eq f(vA,vB)eq f(2r(2),1). 第六章 曲线运动和圆周运动 练习题一、选择题(本大题共12小题,每小题3分,共36分,本题给出的四个选项中,只

54、有一个选项符合题意,请将所选项前的字母填写在答题卡中对应题号下的空格中)1、物体做曲线运动时,下列说法中不可能存在的是:A速度的大小可以不发生变化而方向在不断地变化。B速度的方向可以不发生变化而大小在不断地变化C速度的大小和方向都可以在不断地发生变化D加速度的方向在不断地发生变化2、关于曲线运动的说法中正确的是:A做曲线运动物体的加速度方向跟它的速度方向不在同一直线上B速度变化的运动必定是曲线运动C受恒力作用的物体不做曲线运动D加速度变化的运动必定是曲线运动3、关于运动的合成,下列说法中正确的是:A合运动的速度一定比每一个分运动的速度大B两个匀变速直线运动的合运动一定是曲线运动C只要两个分运动

55、是直线运动,那么合运动也一定是直线运动D两个分运动的时间一定与它们合运动的时间相等4、关于做平抛运动的物体,下列说法中正确的是: A从同一高度以不同速度水平抛出的物体,在空中的运动时间不同B以相同速度从不同高度水平抛出的物体,在空中的运动时间相同C平抛初速度越大的物体,水平位移一定越大D做平抛运动的物体,落地时的速度与抛出时的速度大小和抛出时的高度有关5、一物体(wt)从某高度以初速度水平(shupng)抛出,落地时速度大小为,则它的运动(yndng)时间为: A B C D 6、做匀速圆周运动的物体,下列哪些量是不变的:A线速度 B角速度 C向心加速度 D向心力7、关于圆周运动的向心加速度的

56、物理意义,下列说法中正确的是:A它描述的是线速度大小变化的快慢B它描述的是角速度大小变化的快慢C它描述的是线速度方向变化的快慢D以上说法均不正确 8、如图所示,为一在水平面内做匀速圆周运动的圆锥摆,关于摆球A的受力情况,下列说法中正确的是:A摆球A受重力、拉力和向心力的作用B摆球A受拉力和向心力的作用C摆球A受拉力和重力的作用D摆球A受重力和向心力的作用 、如图所示,小物块A与圆盘保持相对静止,跟着圆盘一起作匀速圆周运动,则下列关于A的受力情况说法正确的是A受重力、支持力B受重力、支持力和指向圆心的摩擦力C受重力、支持力、摩擦力和向心力D受重力、支持力和与运动方向相同的摩擦力10、质量为 的汽

57、车,以速率 通过半径为 r 的凹形桥,在桥面最低点时汽车对桥面的压力大小是:A B C D 11、物体以速度水平抛出,若不计空气阻力,则当其竖直分位移与水平位移相等时,以下说法中不正确的是A 竖直分速度等于水平分速度 B 即时速度大小为C 运动的时间为 D 运动的位移为12、一条河宽为,河水流速为,小船在静水中的速度为,要使小船在渡河过程中所行路程S最短,则:A当时,S B当时,C当时, D当,二、填空题(本大题共6小题,每空2分,共24分。把答案(d n)填写在题中横线上的空白处,不要求写出说明或过程)13在长为80cm的玻璃管中注满清水,水中放一个可以匀速上浮(shn f)的红蜡烛,将此玻

58、璃管竖直放置,让红蜡烛沿玻璃管从底部匀速上升,与此同时,让玻璃管沿水平方向向右匀速移动,若红蜡烛在玻璃管中沿竖直方向向上运动的速度为8cm/s,玻璃管沿水平方向移动的速度为6cm/s,则红蜡烛运动的速度大小是 cm/s,红蜡烛(lzh)上升到水面的时间为 S。14、小球从离地5m高、离竖直墙4m远处以8m/s的速度向墙水平抛出,不计空气阻力,则小球碰墙点离地高度为 m,要使小球不碰到墙,它的初速度必须小于 m/s。(取g = 10m/s2)15、如图所示皮带转动轮,大轮直径是小轮直径的2 倍,A是大轮边缘上一点,B是小轮边缘上一点, C是大轮上一点,C到圆心O1的距离等于小轮半径。 转动时皮带不打滑,则A、B两点的角速度之比A:B_ ,B、C两点向心加速度大小之比:_ 。16一辆汽车以54km/h的速率通过一座拱桥的桥顶,汽车对桥

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论