




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知函数(,且)在区间上的值域为,则( )ABC或D或42已知是等差数列的前项和,则( )A85BC35D3一个几何体的三视图如图所示,其中正视图是一个正三角形,则这个几何体的体积为( ) ABCD4在中,角的对边分别为,若则角的大小为()ABCD5存在点在椭圆上,且点M在第一象限,使得过点M且与椭圆在此点的切线垂直的直线经过点,则椭圆离心率的取值范围是( )ABCD6将函数图象上每一点的横坐标变为原来的2倍,再将图像向左平移个单位长度,得到函数的图象,则函数图象的一个对称中心为(
3、 )ABCD7过抛物线的焦点的直线与抛物线交于、两点,且,抛物线的准线与轴交于,的面积为,则( )ABCD8已知数列对任意的有成立,若,则等于( )ABCD9某个小区住户共200户,为调查小区居民的7月份用水量,用分层抽样的方法抽取了50户进行调查,得到本月的用水量(单位:m3)的频率分布直方图如图所示,则小区内用水量超过15 m3的住户的户数为( )A10B50C60D14010已知正项等比数列满足,若存在两项,使得,则的最小值为( ).A16BC5D411直线x-3y+3=0经过椭圆x2a2+y2b2=1ab0的左焦点F,交椭圆于A,B两点,交y轴于C点,若FC=2CA,则该椭圆的离心率是
4、()A3-1B3-12C22-2D2-112已知抛物线的焦点为,过焦点的直线与抛物线分别交于、两点,与轴的正半轴交于点,与准线交于点,且,则( )AB2CD3二、填空题:本题共4小题,每小题5分,共20分。13已知是函数的极大值点,则的取值范围是_14已知实数,满足,则的最大值为_.15已知是偶函数,则的最小值为_.16公比为正数的等比数列的前项和为,若,则的值为_三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)某企业对设备进行升级改造,现从设备改造前后生产的大量产品中各抽取了100件产品作为样本,检测一项质量指标值,该项质量指标值落在区间内的产品视为合格品,否则视
5、为不合格品,如图是设备改造前样本的频率分布直方图,下表是设备改造后样本的频数分布表.图:设备改造前样本的频率分布直方图表:设备改造后样本的频率分布表质量指标值频数2184814162(1)求图中实数的值;(2)企业将不合格品全部销毁后,对合格品进行等级细分,质量指标值落在区间内的定为一等品,每件售价240元;质量指标值落在区间或内的定为二等品,每件售价180元;其他的合格品定为三等品,每件售价120元,根据表1的数据,用该组样本中一等品、二等品、三等品各自在合格品中的频率代替从所有产品中抽到一件相应等级产品的概率.若有一名顾客随机购买两件产品支付的费用为(单位:元),求的分布列和数学期望.18
6、(12分)山东省高考改革试点方案规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成将每门选考科目的考生原始成绩从高到低划分为、共8个等级参照正态分布原则,确定各等级人数所占比例分别为、选考科目成绩计入考生总成绩时,将至等级内的考生原始成绩,依照等比例转换法则,分别转换到、八个分数区间,得到考生的等级成绩某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布(1)求物理原始成绩在区间的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记表示这3人中等
7、级成绩在区间的人数,求的分布列和数学期望(附:若随机变量,则,)19(12分)某社区服务中心计划按月订购一种酸奶,每天进货量相同,进货成本每瓶5元,售价每瓶7元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:摄氏度)有关.如果最高气温不低于25,需求量为600瓶;如果最高气温位于区间,需求量为500瓶;如果最高气温低于20,需求量为300瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温天数414362763以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的
8、需求量(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为(单位:元),当六月份这种酸奶一天的进货量为(单位:瓶)时,的数学期望的取值范围?20(12分)在中,角的对边分别为,且,(1)求的值;(2)若求的面积21(12分)近年来,随着“雾霾”天出现的越来越频繁,很多人为了自己的健康,外出时选择戴口罩,在一项对人们雾霾天外出时是否戴口罩的调查中,共调查了人,其中女性人,男性人,并根据统计数据画出等高条形图如图所示:(1)利用图形判断性别与雾霾天外出戴口罩是否有关系并说明理由;(2)根据统计数据建立一个列联表;(3)能否在犯错误的概率不超过的前提下认为性别与雾霾天外出戴口罩的关系.附:2
9、2(10分)已知数列的各项均为正数,为其前n项和,对于任意的满足关系式.(1)求数列的通项公式;(2)设数列的通项公式是,前n项和为,求证:对于任意的正数n,总有.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1C【解析】对a进行分类讨论,结合指数函数的单调性及值域求解.【详解】分析知,.讨论:当时,所以,所以;当时,所以,所以.综上,或,故选C.【点睛】本题主要考查指数函数的值域问题,指数函数的值域一般是利用单调性求解,侧重考查数学运算和数学抽象的核心素养.2B【解析】将已知条件转化为的形式,求得,由此求得.【详解】设公差为,则
10、,所以,.故选:B【点睛】本小题主要考查等差数列通项公式的基本量计算,考查等差数列前项和的计算,属于基础题.3C【解析】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,求出底面面积,代入锥体体积公式,可得答案【详解】由已知中的三视图,可知该几何体是一个以俯视图为底面的三棱锥,其底面面积,高,故体积,故选:【点睛】本题考查的知识点是由三视图求几何体的体积,解决本题的关键是得到该几何体的形状4A【解析】由正弦定理化简已知等式可得,结合,可得,结合范围,可得,可得,即可得解的值【详解】解:,由正弦定理可得:,故选A【点睛】本题主要考查了正弦定理在解三角形中的应用,考查了计算能力和转化思想
11、,属于基础题5D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可.【详解】因为过点M椭圆的切线方程为,所以切线的斜率为,由,解得,即,所以,所以.故选:D【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.6D【解析】根据函数图象的变换规律可得到解析式,然后将四个选项代入逐一判断即可.【详解】解:图象上每一点的横坐标变为原来的2倍,得到再将图像向左平移个单位长度,得到函数的图象,故选:D【点睛】考查三角函数图象的变换规律以及其有关性质,基础题.7B【解析】设点、,并设直线的方程为,由得,将直线的方程代入韦达定理,求得,结合的面积求得的值,结合焦点弦长公式可求得.【详解
12、】设点、,并设直线的方程为,将直线的方程与抛物线方程联立,消去得,由韦达定理得,可得,抛物线的准线与轴交于,的面积为,解得,则抛物线的方程为,所以,.故选:B.【点睛】本题考查抛物线焦点弦长的计算,计算出抛物线的方程是解答的关键,考查计算能力,属于中等题.8B【解析】观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有, ,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.9C【解析】从频率分布直方图可知,用水量超过15m的住户的频率为,即分
13、层抽样的50户中有0.350=15户住户的用水量超过15立方米所以小区内用水量超过15立方米的住户户数为,故选C10D【解析】由,可得,由,可得,再利用“1”的妙用即可求出所求式子的最小值.【详解】设等比数列公比为,由已知,即,解得或(舍),又,所以,即,故,所以,当且仅当时,等号成立.故选:D.【点睛】本题考查利用基本不等式求式子和的最小值问题,涉及到等比数列的知识,是一道中档题.11A【解析】由直线x-3y+3=0过椭圆的左焦点F,得到左焦点为F(-3,0),且a2-b2=3,再由FC=2CA,求得A32,32,代入椭圆的方程,求得a2=33+62,进而利用椭圆的离心率的计算公式,即可求解
14、.【详解】由题意,直线x-3y+3=0经过椭圆的左焦点F,令y=0,解得x=3,所以c=3,即椭圆的左焦点为F(-3,0),且a2-b2=3 直线交y轴于C(0,1),所以,OF=3,OC=1,FC=2,因为FC=2CA,所以FA=3,所以A32,32,又由点A在椭圆上,得3a2+9b2=4 由,可得4a2-24a2+9=0,解得a2=33+62,所以e2=c2a2=633+6=4-23=3-12,所以椭圆的离心率为e=3-1.故选A.【点睛】本题考查了椭圆的几何性质离心率的求解,其中求椭圆的离心率(或范围),常见有两种方法:求出a,c ,代入公式e=ca;只需要根据一个条件得到关于a,b,c
15、的齐次式,转化为a,c的齐次式,然后转化为关于e的方程,即可得e的值(范围)12B【解析】过点作准线的垂线,垂足为,与轴交于点,由和抛物线的定义可求得,利用抛物线的性质可构造方程求得,进而求得结果.【详解】过点作准线的垂线,垂足为,与轴交于点,由抛物线解析式知:,准线方程为.,由抛物线定义知:,.由抛物线性质得:,解得:,.故选:.【点睛】本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.二、填空题:本题共4小题,每小题5分,共20分。13【解析】方法一:令,则,当,时,单调递减,时,且,在上单调递增,时,且,在上单调递减,是函数的极大值点,满足题意;当时,存
16、在使得,即,又在上单调递减,时,所以,这与是函数的极大值点矛盾综上,方法二:依据极值的定义,要使是函数的极大值点,由知须在的左侧附近,即;在的右侧附近,即易知,时,与相切于原点,所以根据与的图象关系,可得14【解析】画出不等式组表示的平面区域,将目标函数理解为点与构成直线的斜率,数形结合即可求得.【详解】不等式组表示的平面区域如下所示:因为可以理解为点与构成直线的斜率,数形结合可知,当且仅当目标函数过点时,斜率取得最大值,故的最大值为.故答案为:.【点睛】本题考查目标函数为斜率型的规划问题,属基础题.152【解析】由偶函数性质可得,解得,再结合基本不等式即可求解【详解】令得,所以,当且仅当时取
17、等号.故答案为:2【点睛】考查函数的奇偶性、基本不等式,属于基础题1656【解析】根据已知条件求等比数列的首项和公比,再代入等比数列的通项公式,即可得到答案.【详解】,.故答案为:.【点睛】本题考查等比数列的通项公式和前项和公式,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)详见解析【解析】(1)由频率分布直方图中所有频率(小矩形面积)之和为1可计算出值;(2)由频数分布表知一等品、二等品、三等品的概率分别为.,选2件产品,支付的费用的所有取值为240,300,360,420,480,由相互独立
18、事件的概率公式分别计算出概率,得概率分布列,由公式计算出期望【详解】解:(1)据题意,得所以(2)据表1分析知,从所有产品中随机抽一件是一等品、二等品、三等品的概率分别为.随机变量的所有取值为240,300,360,420,480.随机变量的分布列为240300360420480所以(元)【点睛】本题考查频率分布直方图,频数分布表,考查随机变量的概率分布列和数学期望,解题时掌握性质:频率分布直方图中所有频率和为1本题考查学生的数据处理能力,属于中档题18()1636人;()见解析【解析】()根据正态曲线的对称性,可将区间分为和两种情况,然后根据特殊区间上的概率求出成绩在区间内的概率,进而可求出
19、相应的人数;()由题意得成绩在区间61,80的概率为,且,由此可得的分布列和数学期望【详解】()因为物理原始成绩,所以所以物理原始成绩在(47,86)的人数为(人)()由题意得,随机抽取1人,其成绩在区间61,80内的概率为所以随机抽取三人,则的所有可能取值为0,1,2,3,且,所以 , 所以的分布列为0123所以数学期望【点睛】(1)解答第一问的关键是利用正态分布的三个特殊区间表示所求概率的区间,再根据特殊区间上的概率求解,解题时注意结合正态曲线的对称性(2)解答第二问的关键是判断出随机变量服从二项分布,然后可得分布列及其数学期望当被抽取的总体的容量较大时,抽样可认为是等可能的,进而可得随机变量服从二项分布19(1)见解析;(2)【解析】(1)X的可能取值为300,500,600,结合题意及表格数据计算对应概率,即得解;(2)由题意得,分,及,分别得到y与n的函数关系式,得到对应的分布列,分析即得解.【详解】(1)由题意:X的可能取值为300,500,600 故:六月份这种酸奶一天的需求量(单位:瓶)的分布列为300500600(2)由题意得.1.当时,利润此时利润的分布列为.2.时,利润此时利润的分布列为.综上的数学期望的取值范围是.【点睛】本题考查了函数与概率统计综合,考查了学生综合分析,数据处理,转化划归,数学
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年金融行业数据分析师面试模拟题及策略分析
- 2025年心理咨询师资格认证模拟题及参考答案
- 2025年电子商务师高级考试试题及解析与答案
- 2025年交通安全问答试题及答案
- 2025年轨道交通调度员(技师)职业技能鉴定考试题库及答案(浓缩50题)
- 2025注册验船师资格考试(B级船舶检验法律法规)模拟试题及答案一
- 2025年能源资源管理与可持续发展考题及答案
- 桃花源记课件深圳
- 陕西省四校联考2026届化学高一第一学期期中调研试题含解析
- 桃源消防知识培训讲座课件
- 生物化学英文版课件:Chapter 7 Carbohydrates Glycobiology
- 走进奇妙的几何世界
- 飞虎队精神将永远留在这里
- 湘教版九年级美术教学计划(三篇)
- 紧急宫颈环扎术的手术指征及术后管理-课件
- “三重一大”决策 标准化流程图 20131017
- Cpk 计算标准模板
- 信息科技课程标准新课标学习心得分享
- 环保与物业公司合作协议
- FZ/T 01057.2-2007纺织纤维鉴别试验方法 第2部分:燃烧法
- 面条制品-课件
评论
0/150
提交评论