天津市南开大学2021-2022学年高考考前提分数学仿真卷含解析_第1页
天津市南开大学2021-2022学年高考考前提分数学仿真卷含解析_第2页
天津市南开大学2021-2022学年高考考前提分数学仿真卷含解析_第3页
天津市南开大学2021-2022学年高考考前提分数学仿真卷含解析_第4页
天津市南开大学2021-2022学年高考考前提分数学仿真卷含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷注意事项1考试结束后,请将本试卷和答题卡一并交回2答题前,请务必将自己的姓名、准考证号用05毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置3请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符4作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效5如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目

2、要求的。1港珠澳大桥于2018年10月2刻日正式通车,它是中国境内一座连接香港、珠海和澳门的桥隧工程,桥隧全长55千米桥面为双向六车道高速公路,大桥通行限速100km/h,现对大桥某路段上1000辆汽车的行驶速度进行抽样调查画出频率分布直方图(如图),根据直方图估计在此路段上汽车行驶速度在区间85,90)的车辆数和行驶速度超过90km/h的频率分别为()A300,B300,C60,D60,2下列命题为真命题的个数是( )(其中,为无理数);.A0B1C2D33设双曲线的右顶点为,右焦点为,过点作平行的一条渐近线的直线与交于点,则的面积为( )ABC5D64陀螺是中国民间较早的娱乐工具之一,但陀

3、螺这个名词,直到明朝刘侗、于奕正合撰的帝京景物略一书中才正式出现.如图所示的网格纸中小正方形的边长均为1,粗线画出的是一个陀螺模型的三视图,则该陀螺模型的表面积为( )ABCD5设复数满足(为虚数单位),则在复平面内对应的点位于( )A第一象限B第二象限C第三象限D第四象限6已知是虚数单位,若,则( )AB2CD107某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是( )A有99%以上的把握认为“学生性别与中学生追星无关”B

4、有99%以上的把握认为“学生性别与中学生追星有关”C在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”8如图,平面四边形中,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为( )ABCD9设递增的等比数列的前n项和为,已知,则( )A9B27C81D10若实数x,y满足条件,目标函数,则z 的最大值为()AB1C2D011已知集合Mx|1x2,Nx|x(x+3)0,则MN( )A3,2)B(3,2)C(1,0D(1,0)12若函数有且只有4个不同的零点,则实数的取值范围是( )ABCD二、填空题

5、:本题共4小题,每小题5分,共20分。13有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则对应的排法有_种; _;14根据如图的算法,输出的结果是_.15设函数,若对于任意的,2,不等式恒成立,则实数a的取值范围是 16已知数列满足:,若对任意的正整数均有,则实数的最大值是_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)己知的内角的对边分别为.设(1)求的值;(2)若,且,求的值.18(12分)如图1,四边形是边长为2的菱形,为的中点,以为折痕将折起到的位置,使得平面平面,如图2.(1)证明:平面平面;(2)求点到平面的距离.19(1

6、2分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.20(12分)已知函数(为实常数).(1)讨论函数在上的单调性;(2)若存在,使得成立,求实数的取值范围.21(12分)如图,正方形所在平面外一点满足,其中分别是与的中点.(1)求证:;(2)若,且二面角的平面角的余弦值为,求与平面所成角的正弦值.22(10分)设数列的前n项和满足,(1)证明:数列是等差数列,并求其通项公式(2)设,求证:.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】由频率分布直方图求出在此路段上汽

7、车行驶速度在区间的频率即可得到车辆数,同时利用频率分布直方图能求行驶速度超过的频率【详解】由频率分布直方图得:在此路段上汽车行驶速度在区间的频率为,在此路段上汽车行驶速度在区间的车辆数为:,行驶速度超过的频率为:故选:B【点睛】本题考查频数、频率的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,是基础题2C【解析】对于中,根据指数幂的运算性质和不等式的性质,可判定值正确的;对于中,构造新函数,利用导数得到函数为单调递增函数,进而得到,即可判定是错误的;对于中,构造新函数,利用导数求得函数的最大值为,进而得到,即可判定是正确的.【详解】由题意,对于中,由,可得,根据不等式的性质,可得

8、成立,所以是正确的;对于中,设函数,则,所以函数为单调递增函数,因为,则又由,所以,即,所以不正确;对于中,设函数,则,当时,函数单调递增,当时,函数单调递减,所以当时,函数取得最大值,最大值为,所以,即,即,所以是正确的.故选:C.【点睛】本题主要考查了不等式的性质,以及导数在函数中的综合应用,其中解答中根据题意,合理构造新函数,利用导数求得函数的单调性和最值是解答的关键,着重考查了构造思想,以及推理与运算能力,属于中档试题.3A【解析】根据双曲线的标准方程求出右顶点、右焦点的坐标,再求出过点与的一条渐近线的平行的直线方程,通过解方程组求出点的坐标,最后利用三角形的面积公式进行求解即可.【详

9、解】由双曲线的标准方程可知中:,因此右顶点的坐标为,右焦点的坐标为,双曲线的渐近线方程为:,根据双曲线和渐近线的对称性不妨设点作平行的一条渐近线的直线与交于点,所以直线的斜率为,因此直线方程为:,因此点的坐标是方程组:的解,解得方程组的解为:,即,所以的面积为:.故选:A【点睛】本题考查了双曲线的渐近线方程的应用,考查了两直线平行的性质,考查了数学运算能力.4C【解析】根据三视图可知,该几何体是由两个圆锥和一个圆柱构成,由此计算出陀螺的表面积.【详解】最上面圆锥的母线长为,底面周长为,侧面积为,下面圆锥的母线长为,底面周长为,侧面积为,没被挡住的部分面积为,中间圆柱的侧面积为.故表面积为,故选

10、C.【点睛】本小题主要考查中国古代数学文化,考查三视图还原为原图,考查几何体表面积的计算,属于基础题.5A【解析】由复数的除法运算可整理得到,由此得到对应的点的坐标,从而确定所处象限.【详解】由得:,对应的点的坐标为,位于第一象限.故选:.【点睛】本题考查复数对应的点所在象限的求解,涉及到复数的除法运算,属于基础题.6C【解析】根据复数模的性质计算即可.【详解】因为,所以,故选:C【点睛】本题主要考查了复数模的定义及复数模的性质,属于容易题.7B【解析】通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本

11、题考查了独立性检验的应用问题,属于基础题.8C【解析】由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知又因为,则面,于是,因此三棱锥外接球球心是的中点计算可知,则外接球半径为1,从而外接球表面积为故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题9A【解析】根据两个已知条件求出数列的公比和首项,即得的值.【详解】设等比数列的公比为q.由,得,解得或.因为.且数列递增,所以.又,解得,故.故选:A【点睛】本题主要考

12、查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.10C【解析】画出可行域和目标函数,根据平移得到最大值.【详解】若实数x,y满足条件,目标函数如图:当时函数取最大值为 故答案选C【点睛】求线性目标函数的最值:当时,直线过可行域且在轴上截距最大时,值最大,在轴截距最小时,z值最小;当时,直线过可行域且在轴上截距最大时,值最小,在轴上截距最小时,值最大.11C【解析】先化简Nx|x(x+3)0=x|-3x0,再根据Mx|1x2,求两集合的交集.【详解】因为Nx|x(x+3)0=x|-3x0,又因为Mx|1x2,所以MNx|1x0.故选:C【点睛】本题主要考查集合的基本运算,还考查

13、了运算求解的能力,属于基础题.12B【解析】由是偶函数,则只需在上有且只有两个零点即可.【详解】解:显然是偶函数所以只需时,有且只有2个零点即可令,则令,递减,且递增,且时,有且只有2个零点,只需故选:B【点睛】考查函数性质的应用以及根据零点个数确定参数的取值范围,基础题.二、填空题:本题共4小题,每小题5分,共20分。1336 ;1. 【解析】的可能取值为0,1,2,3,对应的排法有:.分别求出,由此能求出.【详解】解:有2名老师和3名同学,将他们随机地排成一行,用表示两名老师之间的学生人数,则的可能取值为0,1,2,3,对应的排法有:.对应的排法有36种;,故答案为:36;1.【点睛】本题

14、考查了排列、组合的应用,离散型随机变量的分布列以及数学期望,属于中档题.1455【解析】根据该For语句的功能,可得,可得结果【详解】根据该For语句的功能,可得则故答案为:55【点睛】本题考查For语句的功能,属基础题.15【解析】试题分析:由题意得函数在2,上单调递增,当时在2,上单调递增;当时在上单调递增;在上单调递减,因此实数a的取值范围是考点:函数单调性162【解析】根据递推公式可考虑分析,再累加求出关于关于参数的关系,根据表达式的取值分析出,再用数学归纳法证明满足条件即可.【详解】因为,累加可得.若,注意到当时,不满足对任意的正整数均有.所以.当时,证明:对任意的正整数都有.当时,

15、 成立.假设当时结论成立,即,则,即结论对也成立.由数学归纳法可知,对任意的正整数都有.综上可知,所求实数的最大值是2.故答案为:2【点睛】本题主要考查了根据数列的递推公式求解参数最值的问题,需要根据递推公式累加求解,同时注意结合参数的范围问题进行分析.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)(2)【解析】(1)由正弦定理将,转化,即,由余弦定理求得, 再由平方关系得再求解.(2)由,得,结合再求解.【详解】(1)由正弦定理,得,即,则,而,又,解得,故.(2)因为,则,因为,故,故,解得,故,则.【点睛】本题考查正弦定理、余弦定理、三角形的面积公式,

16、考查运算求解能力以及化归与转化思想,属于中档题.18(1)证明见解析(2)【解析】(1)由题意可证得,所以平面,则平面平面可证;(2)解法一:利用等体积法由可求出点到平面的距离;解法二:由条件知点到平面的距离等于点到平面的距离,过点作的垂线,垂足,证明平面,计算出即可.【详解】解法一:(1)依题意知,因为,所以.又平面平面,平面平面,平面,所以平面.又平面,所以.由已知,是等边三角形,且为的中点,所以.因为,所以.又,所以平面.又平面,所以平面平面.(2)在中,所以.由(1)知,平面,且,所以三棱锥的体积.在中,得,由(1)知,平面,所以,所以,设点到平面的距离,则三棱锥的体积,得.解法二:(

17、1)同解法一;(2)因为,平面,平面,所以平面.所以点到平面的距离等于点到平面的距离.过点作的垂线,垂足,即.由(1)知,平面平面,平面平面,平面,所以平面,即为点到平面的距离.由(1)知,在中,得.又,所以.所以点到平面的距离为.【点睛】本题主要考查空间面面垂直的的判定及点到面的距离,考查学生的空间想象能力、推理论证能力、运算求解能力.求点到平面的距离一般可采用两种方法求解:等体积法;作(找)出点到平面的垂线段,进行计算即可.19(1);(2).【解析】(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解

18、不等式即可.【详解】解:(1)当时,则当时,由得,解得;当时,恒成立;当时,由得,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,当时,式等号成立,即.又因为,当时,式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.20(1)见解析(2)【解析】(1)分类讨论的值,利用导数证明单调性即可;(2)利用导数分别得出,时,的最小值,即可得出实数的取值范围.【详解】(1),.当即时,此时,在上单调递增;当即时,时,在上单调递减;时,在上单调递增;当即时,此时,在上单调递减;(2)当时,因为在上单调递增,所以的最小值为,所以当时,在上单调递减,在上单调递增所以的最小值为.因为,所以,.所以,所以.当时,在上单调递减所以的最小值为因为,所以,所以,综上,.【点睛】本题主要考查了利用导数证明函数的单调性以及利用导数研究函数的存在性问题,属于中档题.21(1)证明见解析(2)【解析】(1)先证明EF平面,即可求证;(2)根据二面角的余弦值,可得平面,以为坐标原点,建立空间直角坐标系,利用向量计算线面角即可.【详解】(1)连接,交于点,连结.则,故面.又面,因此.(2)由(1)知即为二面角的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论