2021-2022学年安徽省农兴中学高三六校第一次联考数学试卷含解析_第1页
2021-2022学年安徽省农兴中学高三六校第一次联考数学试卷含解析_第2页
2021-2022学年安徽省农兴中学高三六校第一次联考数学试卷含解析_第3页
2021-2022学年安徽省农兴中学高三六校第一次联考数学试卷含解析_第4页
2021-2022学年安徽省农兴中学高三六校第一次联考数学试卷含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2021-2022高考数学模拟试卷请考生注意:1请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用05毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2答题前,认真阅读答题纸上的注意事项,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1已知,是双曲线的两个焦点,过点且垂直于轴的直线与相交于,两点,若,则的内切圆的半径为( )ABCD2已知,若实数,满足不等式组,则目标函数( )A有最大值,无最小值B有最大值,有最小值C无最大值,有最小值D无最大值,无最小值3阅读下侧程序框图

2、,为使输出的数据为31,则处应填的数字为A4B5C6D74某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为的样本,其频率分布直方图如图所示,其中支出在(单位:元)的同学有34人,则的值为( )A100B1000C90D905已知角的顶点为坐标原点,始边与轴的非负半轴重合,终边上有一点,则( )ABCD6已知若(1-ai )( 3+2i )为纯虚数,则a的值为 ( )ABCD7某校为提高新入聘教师的教学水平,实行“老带新”的师徒结对指导形式,要求每位老教师都有徒弟,每位新教师都有一位老教师指导,现选出3位老教师负责指导5位新入聘教师,则不同的师徒结对方式共有( )种.A360B240

3、C150D1208复数满足,则( )ABCD9如图所示,网格纸上小正方形的边长为1,粗线画出的是由一个棱柱挖去一个棱锥后的几何体的三视图,则该几何体的体积为A72B64C48D3210若实数满足的约束条件,则的取值范围是( )ABCD11双曲线的左右焦点为,一条渐近线方程为,过点且与垂直的直线分别交双曲线的左支及右支于,满足,则该双曲线的离心率为( )AB3CD212已知等差数列的前13项和为52,则( )A256B-256C32D-32二、填空题:本题共4小题,每小题5分,共20分。13函数在处的切线方程是_.14已知等边三角形的边长为1,点、分别为线段、上的动点,则取值的集合为_15如图,

4、两个同心圆的半径分别为和,为大圆的一条 直径,过点作小圆的切线交大圆于另一点,切点为,点为劣弧上的任一点(不包括 两点),则的最大值是_16双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为_,离心率为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)在四棱锥中,底面为直角梯形,分别为,的中点(1)求证:(2)若,求二面角的余弦值18(12分)已知函数.(1)求不等式的解集;(2)若关于的不等式在区间内无解,求实数的取值范围.19(12分)如图,在四棱柱中,平面,底面ABCD满足BC,且()求证:平面;()求直线与平面所成角的正

5、弦值.20(12分)在中,角,的对边分别为, 且的面积为.(1)求;(2)求的周长 .21(12分)已知函数.(1)当时,求不等式的解集;(2)若关于的不等式的解集包含,求实数的取值范围.22(10分)已知椭圆,过的直线与椭圆相交于两点,且与轴相交于点.(1)若,求直线的方程;(2)设关于轴的对称点为,证明:直线过轴上的定点.参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1B【解析】设左焦点的坐标, 由AB的弦长可得a的值,进而可得双曲线的方程,及左右焦点的坐标,进而求出三角形ABF2的面积,再由三角形被内切圆的圆心分割3个三角形

6、的面积之和可得内切圆的半径.【详解】由双曲线的方程可设左焦点,由题意可得,由,可得,所以双曲线的方程为: 所以,所以三角形ABF2的周长为设内切圆的半径为r,所以三角形的面积,所以,解得,故选:B【点睛】本题考查求双曲线的方程和双曲线的性质及三角形的面积的求法,内切圆的半径与三角形长周长的一半之积等于三角形的面积可得半径的应用,属于中档题.2B【解析】判断直线与纵轴交点的位置,画出可行解域,即可判断出目标函数的最值情况.【详解】由,所以可得.,所以由,因此该直线在纵轴的截距为正,但是斜率有两种可能,因此可行解域如下图所示:由此可以判断该目标函数一定有最大值和最小值.故选:B【点睛】本题考查了目

7、标函数最值是否存在问题,考查了数形结合思想,考查了不等式的性质应用.3B【解析】考点:程序框图分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案解:程序在运行过程中各变量的值如下表示: S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i5时退出,故选B4A【解析】利用频率分布直方图得到支出在的同学的频率,再结合支出在(单位:元)的同学有34人,即得解【详解】由题意,支出在(单位:元)的同学有34人由频率分布直方图可知,支

8、出在的同学的频率为故选:A【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题.5B【解析】根据角终边上的点坐标,求得,代入二倍角公式即可求得的值.【详解】因为终边上有一点,所以,故选:B【点睛】此题考查二倍角公式,熟练记忆公式即可解决,属于简单题目.6A【解析】根据复数的乘法运算法则化简可得,根据纯虚数的概念可得结果.【详解】由题可知原式为,该复数为纯虚数,所以.故选:A【点睛】本题考查复数的运算和复数的分类,属基础题.7C【解析】可分成两类,一类是3个新教师与一个老教师结对,其他一新一老结对,第二类两个老教师各带两个新教师,一个老教师带一个新教师

9、,分别计算后相加即可【详解】分成两类,一类是3个新教师与同一个老教师结对,有种结对结对方式,第二类两个老教师各带两个新教师,有共有结对方式6090150种故选:C【点睛】本题考查排列组合的综合应用解题关键确定怎样完成新老教师结对这个事情,是先分类还是先分步,确定方法后再计数本题中有一个平均分组问题计数时容易出错两组中每组中人数都是2,因此方法数为8C【解析】利用复数模与除法运算即可得到结果.【详解】解: ,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.9B【解析】由三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四

10、棱锥,利用体积公式,即可求解。【详解】由题意,几何体的三视图可知该几何体是一个底面边长为4的正方形,高为5的正四棱柱,挖去一个底面边长为4,高为3的正四棱锥,所以几何体的体积为,故选B。【点睛】本题考查了几何体的三视图及体积的计算,在由三视图还原为空间几何体的实际形状时,要根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线。求解以三视图为载体的空间几何体的表面积与体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应公式求解。10B【解析】根据所给不等式组,画出不等式表示的可行域,将目标函数化为直线方程,平移后即可确定取值范围.【

11、详解】实数满足的约束条件,画出可行域如下图所示:将线性目标函数化为,则将平移,平移后结合图像可知,当经过原点时截距最小,;当经过时,截距最大值,所以线性目标函数的取值范围为,故选:B.【点睛】本题考查了线性规划的简单应用,线性目标函数取值范围的求法,属于基础题.11A【解析】设,直线的方程为,联立方程得到,根据向量关系化简到,得到离心率.【详解】设,直线的方程为.联立整理得,则.因为,所以为线段的中点,所以,整理得,故该双曲线的离心率.故选:.【点睛】本题考查了双曲线的离心率,意在考查学生的计算能力和转化能力.12A【解析】利用等差数列的求和公式及等差数列的性质可以求得结果.【详解】由,得.选

12、A.【点睛】本题主要考查等差数列的求和公式及等差数列的性质,等差数列的等和性应用能快速求得结果.二、填空题:本题共4小题,每小题5分,共20分。13【解析】求出和的值,利用点斜式可得出所求切线的方程.【详解】,则,.因此,函数在处的切线方程是,即.故答案为:.【点睛】本题考查利用导数求函数的切线方程,考查计算能力,属于基础题.14【解析】根据题意建立平面直角坐标系,设三角形各点的坐标,依题意求出,的表达式,再进行数量积的运算,最后求和即可得出结果.【详解】解: 以的中点为坐标原点,所在直线为轴,线段的垂直平分线为轴建立平面直角坐标系,如图所示,则,则,设, ,即点的坐标为,则,所以故答案为:

13、【点睛】本题考查平面向量的坐标表示和线性运算,以及平面向量基本定理和数量积的运算,是中档题.15【解析】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,从而可得、,然后利用向量数量积的坐标运算可得,再根据辅助角公式以及三角函数的性质即可求解.【详解】以为坐标原点,所在的直线为轴,的垂直平分线为轴,建立平面直角坐标系,则、,由,且,所以,所以,即 又平分,所以,则,设,则,所以,所以,所以的最大值是.故答案为:【点睛】本题考查了向量数量积的坐标运算、利用向量解决几何问题,同时考查了辅助角公式以及三角函数的性质,属于中档题.162 2 【解析】设双曲线的右焦点为,根据周长为,计

14、算得到答案.【详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.【点睛】本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1)见解析(2)【解析】(1)由已知可证明平面,从而得证面面垂直,再由,得线面垂直,从而得,由直角三角形得结论;(2)以为轴建立空间直角坐标系,用空间向量法示二面角【详解】(1)证明:连接,平面平面,平面平面,为的中点,平面平面,平面平面,为斜边的中点,(2),由(1)可知,为等腰直角三角形,则以为坐标原点建立如图所示的空间直角坐标系,则,则

15、,记平面的法向量为由得到,取,可得,则易知平面的法向量为记二面角的平面角为,且由图可知为锐角,则,所以二面角的余弦值为【点睛】本题考查用面面垂直的性质定理证明线面垂直,从而得线线垂直,考查用空间向量法求二面角在立体几何中求异面直线成的角、直线与平面所成的角、二面角等空间角时,可以建立空间直角坐标系,用空间向量法求解空间角,可避免空间角的作证过程,通过计算求解18(1);(2).【解析】(1)只需分,三种情况讨论即可;(2)在区间上恒成立,转化为,只需求出即可.【详解】(1)当时,此时不等式无解;当时,由得;当时,由得,综上,不等式的解集为;(2)依题意,在区间上恒成立,则,当时,;当时,所以当

16、时,由得或,所以实数的取值范围为.【点睛】本题考查绝对值不等式的解法、不等式恒成立问题,考查学生分类讨论与转化与化归的思想,是一道基础题.19 () 证明见解析;()【解析】()证明,根据得到,得到证明.() 如图所示,分别以为轴建立空间直角坐标系,平面的法向量,计算向量夹角得到答案.【详解】() 平面,平面,故.,故,故.,故平面.()如图所示:分别以为轴建立空间直角坐标系,则,.设平面的法向量,则,即,取得到,设直线与平面所成角为故.【点睛】本题考查了线面垂直,线面夹角,意在考查学生的空间想象能力和计算能力.20(1)(2)【解析】(1)利用正弦,余弦定理对式子化简求解即可;(2)利用余弦

17、定理以及三角形的面积,求解三角形的周长即可【详解】(1),由正弦定理可得:,即:,由余弦定理得.(2),所以,又,且 ,的周长为【点睛】本题考查正弦定理以及余弦定理的应用,三角形的面积公式,也考查计算能力,属于基础题.21(1)(2)【解析】(1)按进行分类,得到等价不等式组,分别解出解集,再取并集,得到答案;(2)将问题转化为在时恒成立,按和分类讨论,分别得到不等式恒成立时对应的的范围,再取交集,得到答案.【详解】解:(1)当时,等价于或或,解得或或,所以不等式的解集为:.(2)依题意即在时恒成立,当时,即,所以对恒成立,得;当时,即,所以对任意恒成立,得,综上,.【点睛】本题考查分类讨论解绝对值不等式,分类讨论研究不等式恒成立问题,属于中档题.22(1)或;(2)见解析【解析】(1)由已知条件利用点斜式设出直线的方程,则可表示出点的坐标,再由的关系表示出点的坐标,而点在椭圆上,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论