




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2021-2022高考数学模拟试卷注意事项:1答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角条形码粘贴处。2作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡
2、一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( )A14种B15种C16种D18种2已知关于的方程在区间上有两个根,且,则实数的取值范围是( )ABCD3已知抛物线经过点,焦点为,则直线的斜率为( )ABCD4设a,b,c为正数,则“”是“”的( )A充分不必要条件B必要不充分条件C充要条件D既不充分也不修要条件5已知变量x,y间存在线性相关关系,其数据如下表,回归直线方程为,则表中数据m的值为( )变量x0123变量y3
3、5.57A0.9B0.85C0.75D0.56已知复数满足,则的最大值为( )ABCD67若复数满足,其中为虚数单位,是的共轭复数,则复数( )ABC4D58已知展开式的二项式系数和与展开式中常数项相等,则项系数为( )A10B32C40D809如图是一个几何体的三视图,则这个几何体的体积为( )ABCD10已知为抛物线的焦点,点在上,若直线与的另一个交点为,则( )ABCD11已知直线:()与抛物线:交于(坐标原点),两点,直线:与抛物线交于,两点.若,则实数的值为( )ABCD12已知向量,满足|1,|2,且与的夹角为120,则( )ABCD二、填空题:本题共4小题,每小题5分,共20分。
4、13已知,且,则_14已知,则_15对于任意的正数,不等式恒成立,则的最大值为_.16各项均为正数的等比数列中,为其前项和,若,且,则公比的值为_.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(12分)已知数列满足.(1)求数列的通项公式;(2)设数列的前项和为,证明:.18(12分)已知函数.(1)若,解关于的不等式;(2)若当时,恒成立,求实数的取值范围.19(12分)如图,四棱锥中,四边形是矩形,为正三角形,且平面平面,、分别为、的中点.(1)证明:平面;(2)求几何体的体积.20(12分)如图,在四棱锥中,和均为边长为的等边三角形.(1)求证:平面平面;(2)求二
5、面角的余弦值.21(12分)在中,角、的对边分别为、,且.(1)若,求的值;(2)若,求的值.22(10分)函数,且恒成立.(1)求实数的集合;(2)当时,判断图象与图象的交点个数,并证明.(参考数据:)参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1D【解析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此
6、共有27=14种;情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种.综上所述,共有14+4=18种.故选:D【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题2C【解析】先利用三角恒等变换将题中的方程化简,构造新的函数,将方程的解的问题转化为函数图象的交点问题,画出函数图象,再结合,解得的取值范围.【详解】由题化简得,作出的图象,又由易知故选:C.【点睛】本题考查了三角恒等变换,方程的根的问题,利用数形结合法,求得范围.属于中档题.3A【解析】先求出,再求焦点坐标,
7、最后求的斜率【详解】解:抛物线经过点,故选:A【点睛】考查抛物线的基础知识及斜率的运算公式,基础题.4B【解析】根据不等式的性质,结合充分条件和必要条件的定义进行判断即可【详解】解:,为正数,当,时,满足,但不成立,即充分性不成立,若,则,即,即,即,成立,即必要性成立,则“”是“”的必要不充分条件,故选:【点睛】本题主要考查充分条件和必要条件的判断,结合不等式的性质是解决本题的关键5A【解析】计算,代入回归方程可得【详解】由题意,解得故选:A.【点睛】本题考查线性回归直线方程,解题关键是掌握性质:线性回归直线一定过中心点6B【解析】设,利用复数几何意义计算.【详解】设,由已知,所以点在单位圆
8、上,而,表示点到的距离,故.故选:B.【点睛】本题考查求复数模的最大值,其实本题可以利用不等式来解决.7D【解析】根据复数的四则运算法则先求出复数z,再计算它的模长【详解】解:复数za+bi,a、bR;2z,2(a+bi)(abi),即,解得a3,b4,z3+4i,|z|故选D【点睛】本题主要考查了复数的计算问题,要求熟练掌握复数的四则运算以及复数长度的计算公式,是基础题8D【解析】根据二项式定理通项公式可得常数项,然后二项式系数和,可得,最后依据,可得结果.【详解】由题可知:当时,常数项为又展开式的二项式系数和为由所以当时,所以项系数为故选:D【点睛】本题考查二项式定理通项公式,熟悉公式,细
9、心计算,属基础题.9A【解析】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1再由球与圆柱体积公式求解【详解】由三视图还原原几何体如图,该几何体为组合体,上半部分为半球,下半部分为圆柱,半球的半径为1,圆柱的底面半径为1,高为1则几何体的体积为故选:【点睛】本题主要考查由三视图求面积、体积,关键是由三视图还原原几何体,意在考查学生对这些知识的理解掌握水平10C【解析】求得点坐标,由此求得直线的方程,联立直线的方程和抛物线的方程,求得点坐标,进而求得【详解】抛物线焦点为,令,解得,不妨设,则直线的方程为,由,解得,所以.故选:
10、C【点睛】本小题主要考查抛物线的弦长的求法,属于基础题.11D【解析】设,联立直线与抛物线方程,消去、列出韦达定理,再由直线与抛物线的交点求出点坐标,最后根据,得到方程,即可求出参数的值;【详解】解:设,由,得,解得或,.又由,得,或,又,代入解得.故选:D【点睛】本题考查直线与抛物线的综合应用,弦长公式的应用,属于中档题.12D【解析】先计算,然后将进行平方,可得结果.【详解】由题意可得: 则.故选:D.【点睛】本题考查的是向量的数量积的运算和模的计算,属基础题。二、填空题:本题共4小题,每小题5分,共20分。13【解析】试题分析:因,故,所以,,应填.考点:三角变换及运用14【解析】化简得
11、,利用周期即可求出答案【详解】解:,函数的最小正周期为6,故答案为:【点睛】本题主要考查三角函数的性质的应用,属于基础题15【解析】根据均为正数,等价于恒成立,令,转化为恒成立,利用基本不等式求解最值.【详解】由题均为正数,不等式恒成立,等价于恒成立,令则,当且仅当即时取得等号,故的最大值为.故答案为:【点睛】此题考查不等式恒成立求参数的取值范围,关键在于合理进行等价变形,此题可以构造二次函数求解,也可利用基本不等式求解.16【解析】将已知由前n项和定义整理为,再由等比数列性质求得公比,最后由数列各项均为正数,舍根得解.【详解】因为即又等比数列各项均为正数,故故答案为:【点睛】本题考查在等比数
12、列中由前n项和关系求公比,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17(1);(2)见解析.【解析】(1)令,利用可求得数列的通项公式,由此可得出数列的通项公式;(2)求得,利用裂项相消法求得,进而可得出结论.【详解】(1)令,当时,;当时,则,故;(2),.【点睛】本题考查利用求通项,同时也考查了裂项相消法求和,考查计算能力与推理能力,属于基础题.18(1)(2)【解析】(1)利用零点分段法将表示为分段函数的形式,由此求得不等式的解集.(2)对分成三种情况,求得的最小值,由此求得的取值范围.【详解】(1)当时,由此可知,的解集为(2)当时,的最小值为和中的最
13、小值,其中,.所以恒成立.当时,且,不恒成立,不符合题意.当时,若,则,故不恒成立,不符合题意;若,则,故不恒成立,不符合题意.综上,.【点睛】本小题主要考查绝对值不等式的解法,考查根据绝对值不等式恒成立求参数的取值范围,考查分类讨论的数学思想方法,属于中档题.19(1)见解析;(2)【解析】(1)由题可知,根据三角形的中位线的性质,得出,根据矩形的性质得出,所以,再利用线面平行的判定定理即可证出平面;(2)由于平面平面,根据面面垂直的性质,得出平面,从而得出到平面的距离为,结合棱锥的体积公式,即可求得结果.【详解】解:(1),分别为,的中点,四边形是矩形,平面,平面,平面.(2)取,的中点,
14、连接,则,由于为三棱柱,为四棱锥,平面平面,平面,由已知可求得,到平面的距离为,因为四边形是矩形,设几何体的体积为,则,即:.【点睛】本题考查线面平行的判定、面面垂直的性质和棱锥的体积公式,考查逻辑推理和计算能力.20 (1)见证明;(2) 【解析】(1) 取的中点,连接,要证平面平面,转证平面,即证, 即可;(2) 以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,分别求出平面与平面的法向量,代入公式,即可得到结果.【详解】(1)取的中点,连接,因为均为边长为的等边三角形,所以,且因为,所以,所以,又因为,平面,平面,所以平面.又因为平面,所以平面平面.(2)因为,为等边三角形,所以
15、,又因为,所以,在中,由正弦定理,得:,所以.以为坐标原点,以为轴正方向,建立如图所示的空间直角坐标系,则,设平面的法向量为,则,即,令,则平面的一个法向量为,依题意,平面的一个法向量所以故二面角的余弦值为.【点睛】空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.21(1);(2).【解析】(1)利用余弦定理得出关于的二次方程,结合,可求出的值;(2)利用两角和的余弦公
16、式以及诱导公式可求出的值,利用同角三角函数的基本关系求出的值,然后利用二倍角的正切公式可求出的值.【详解】(1)在中,由余弦定理得,即, 解得或(舍),所以;(2)由及得, 所以,又因为,所以,从而,所以.【点睛】本题考查利用余弦定理解三角形,同时也考查了两角和的余弦公式、同角三角函数的基本关系以及二倍角公式求值,考查计算能力,属于中等题.22(1);(2)2个,证明见解析【解析】(1)要恒成立,只要的最小值大于或等于零即可,所以只要讨论求解看是否有最小值;(2)将图像与图像的交点个数转化为方程实数解的个数问题,然后构造函数,再利用导数讨论此函数零点的个数.【详解】(1)的定义域为,因为,1当时,在上单调递减,时,使得,与条件矛盾;2当时,由,得;由,得,所以在上单调递减,在上单调递增,即有,由恒成立,所以恒成立,令,若;若;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸张加工技术基础考核试卷
- 学生实习期工作情况总结汇报(31篇)
- 气压机械在视频监控设备中的应用考核试卷
- 站内无线网络覆盖考核试卷
- 深圳公寓房屋租赁合同(18篇)
- 硅的精炼技术及其设备选择考核试卷
- 玻璃制品的数字化设计与仿真技术考核试卷
- 环保工作总结怎么写(5篇)
- 自我总结300字大全(16篇)
- 公司文员2025工作计划(5篇)
- 义务兵家庭优待金审核登记表
- GA 255-2022警服长袖制式衬衣
- GB/T 5202-2008辐射防护仪器α、β和α/β(β能量大于60keV)污染测量仪与监测仪
- GB/T 39560.4-2021电子电气产品中某些物质的测定第4部分:CV-AAS、CV-AFS、ICP-OES和ICP-MS测定聚合物、金属和电子件中的汞
- GB/T 3452.4-2020液压气动用O形橡胶密封圈第4部分:抗挤压环(挡环)
- 计划生育协会基础知识课件
- 【教材解读】语篇研读-Sailing the oceans
- 抗肿瘤药物过敏反应和过敏性休克
- 排水管道非开挖预防性修复可行性研究报告
- 交通工程基础习习题及参考答案
- 线路送出工程质量创优项目策划书
评论
0/150
提交评论