版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、高一数学函数值域方法汇总第1页,共22页,2022年,5月20日,6点33分,星期四上课第2页,共22页,2022年,5月20日,6点33分,星期四求函数值域方法很多,常用配方法、换元法、判别式法、不等式法、反函数法、图像法(数形结合法)、函数的单调性法以及均值不等式法等。这些方法分别具有极强的针对性,每一种方法又不是万能的。要顺利解答求函数值域的问题,必须熟练掌握各种技能技巧,根据特点选择求值域的方法,下面就常见问题进行总结。第3页,共22页,2022年,5月20日,6点33分,星期四例1 求函数如图,y-3/4,3/2.分析:本题是求二次函数在区间上的值域问题,可用配方法或图像法求解。ox
2、y-113/2-3/41/2第4页,共22页,2022年,5月20日,6点33分,星期四例2 求函数分析:函数是分式函数且都含有二次项,可用判别式和单调性法求解。解法1:由函数知定义域为R,则变形可得: (2y-1)x2-(2y-1)x+(3y1)=0.当2y-1=0即y=1/2时,代入方程左边1/23-10,故1/2.当2y-10,即y 1/2时,因xR,必有=(2y-1)2-4(2y-1)(3y-1) 0得3/10y1/2,综上所得,原函数的值域为y3/10,1/2.第5页,共22页,2022年,5月20日,6点33分,星期四解法2:(函数的单调性法)是增函数,u取最小值时,y也取最小值。
3、原函数的值域为y3/10,12)第6页,共22页,2022年,5月20日,6点33分,星期四例3 求函数 的反函数的定义域.分析:函数f(x)的反函数的定义域就是原函数的 值域,可用不等式法求解。解:变形可得反函数的定义域为(-1,1)。第7页,共22页,2022年,5月20日,6点33分,星期四例4 求下列函数的值域: (1) y=6x2-2x3, (0 x3); (2) 若正数a、b满足ab=a+b+3,求ab的取值范围(99年高考题)。分析:均值不等式可以解决诸多特殊条件的函数值域问题,变形恰当,柳暗花明。(1)解:原函数可变形为:当且仅当x/2=3-x时,即x=2时取等号。故在0 x0
4、,故y=log1/2u的定义域为(0,2上的减函数,即原函数值域的为y -1,+)。分析:本题求值域看似简单,其实有其技巧性,变形适当事半功倍。(1)可用配方法或判别式法求解;(2)可用单调有界性解之。解法1:不难看出y0,且可得定义域为3x5,原函数变形为:例7 求下列函数的值域:(1)y=x-3+5-x; (2)y=x-3-5-x.第14页,共22页,2022年,5月20日,6点33分,星期四由x3,5知,-x2+8x-15 0,1,即当x=4时,ymax=2,当x=3或5时,ymin=2,故原函数的值域为2,2。解法2:(判别式法).两边平方移项得:y2-2=2(x-3)(5-x),再平
5、方整理得4x2-32x+y4-4y2+64=0且y2-20,y看成常数,方程有实根的条件是 =162-4(y4-4y2+64)=-4y2(y2-4) 0,注意到y0得y2-40即0y4而y2-20即有2y2, y2,2.第15页,共22页,2022年,5月20日,6点33分,星期四(2)解:由y=x-3-5-x得定义域为x3,5.y=x-3在3,5上是单调增函数,y=-5-x在3,5上也是单调增函数。 y=x-3-5-x在3,5上是增函数,当x=3时,ymin=-2,当x=5时,ymax=2,故原函数的值域为y-2, 2.第16页,共22页,2022年,5月20日,6点33分,星期四例8 已知
6、圆C:x2-4x+y2+1=0上任意一点P(x,y),求 的最大值与最小值。分析: 即求圆上的点P(x,y)到原点(0,0)的斜率的最值,可利用数形结合法求解。xyoPC解:圆C方程为 (x-2)2+y2=3 , 的最值即求圆上的点P到原点的斜率的最值。设y=kx,如图,显然,当直线y=kx与圆C相切时k有最值,容易得出其最大与最小值分别为3,-3. 第17页,共22页,2022年,5月20日,6点33分,星期四例9 已知圆C:x2+y2-4x+6y+11=0,求x+y+4的最值。分析:本题可转化采用圆的参数方程表达,利用三角函数的有界性解决或在二元二次方程的约束条件下,求x+y+4的线性规划
7、。 解法1:条件可化为(x-2)2+(y+3)2=2把此圆化为参数方程(x+y+4)max=5 (x+y+4)min=1第18页,共22页,2022年,5月20日,6点33分,星期四解法2(线性规划)x,y是圆C:(x-2)2+(y+3)2=2上的点,设x+y+4=z,则y=-x+(z-4),z-4可看作为直线L:x+y+4-z=0在y轴上的截距,作直线y=-x并平移,当直线L:x+y+4-z=0和圆C相切时,z-4有最大值和最小值。(x+y+4)max=5 (x+y+4)min=1xyoC(2,-3)y=-x第19页,共22页,2022年,5月20日,6点33分,星期四例10 求函数 的值域
8、。分析:利用三角函数的有界性较数形结合为点(2,0)与点(cosx,-sinx)连线的斜率的过程要简单。解:将原函数化为sinx+ycosx=2y第20页,共22页,2022年,5月20日,6点33分,星期四例11 求函数y=x2-2x+10+x2+6x+13的值域。分析:本题求函数的值域可用解析几何与数形结合法解之。A1(1,-3)yA(1,3)B(-3,2)xoP将上式可看成为x轴上点P(x,0)与A(1,3),B(-3,2)的距离之和。即在x轴上求作一点P与两定点A,B的距离之和的最值,利用解析几何的方法可求其最小值。如图,可求A关于x轴对称点A1(1,-3)连结A1B交x轴y于P,则P(x,0)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026云南金江沧源水泥工业有限公司专业技术岗招聘5人考试笔试备考题库及答案解析
- 深度解析(2026)《GBT 25667.3-2010整体硬质合金直柄麻花钻 第3部分:技术条件》(2026年)深度解析
- 2026贵州黎平肇兴文化旅游开发(集团)有限公司招聘18人备考笔试试题及答案解析
- 《买矿泉水》数学课件教案
- 2025六枝特区公共汽车运输公司招聘16人笔试考试参考题库及答案解析
- 2025云南昆明医科大学科学技术处招聘科研助理岗位工作人员6人笔试考试备考题库及答案解析
- 2025云南昆华医院投资管理有限公司(云南新昆华医院)招聘(3人)参考考试试题及答案解析
- 2025年铜陵市义安经开区管委会公开招聘编外聘用人员1名模拟笔试试题及答案解析
- 2025年昆明市呈贡区城市投资集团有限公司附下属子公司第二批招聘(11人)参考笔试题库附答案解析
- 25江西南昌动物园招聘1人备考考试试题及答案解析
- GB/T 4957-2003非磁性基体金属上非导电覆盖层覆盖层厚度测量涡流法
- GB/T 27806-2011环氧沥青防腐涂料
- GB/T 12618.1-2006开口型平圆头抽芯铆钉10、11级
- FZ/T 52051-2018低熔点聚酯(LMPET)/聚酯(PET)复合短纤维
- 设备吊装方案编制受力计算
- 食品工程原理概述经典课件
- 养老院机构组织架构图
- 财经法规与会计职业道德
- 会计学本-财务报表分析综合练习
- 传播学概论教学课件
- 《中国传统文化心理学》课件第五章 传统文化与心理治疗(修)
评论
0/150
提交评论