




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1、2023学年九上数学期末模拟试卷注意事项:1答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2答题时请按要求用笔。3请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,数学兴趣小组的小颖想测量教学楼前的一棵树的树高,下午课外活动时她测得一根长为1m的竹竿的影长是0.8m,但当她马上测量树高时,发现树的影子不全落在地面上,有一部分影子落在教学楼的墙
2、壁上(如图),他先测得留在墙壁上的影高为1.2m,又测得地面的影长为2.6m,请你帮她算一下,树高是()A4.25mB4.45mC4.60mD4.75m2的值等于( )ABCD3如图,一段抛物线y=x2+4(2x2)为C1,与x轴交于A0,A1两点,顶点为D1;将C1绕点A1旋转180得到C2,顶点为D2;C1与C2组成一个新的图象,垂直于y轴的直线l与新图象交于点P1(x1,y1),P2(x2,y2),与线段D1D2交于点P3(x3,y3),设x1,x2,x3均为正数,t=x1+x2+x3,则t的取值范围是()A6t8B6t8C10t12D10t1242019的相反数是( )ABC|2019
3、|D20195小刚在解关于x的方程ax2+bx+c=0(a0)时,只抄对了a=1,b=4,解出其中一个根是x=-1他核对时发现所抄的c比原方程的c值小2则原方程的根的情况是( )A不存在实数根B有两个不相等的实数根C有一个根是x=-1D有两个相等的实数根6下列事件中,是必然事件的是( )A抛掷一枚硬币正面向上B从一副完整扑克牌中任抽一张,恰好抽到红桃C今天太阳从西边升起D从4件红衣服和2件黑衣服中任抽3件有红衣服7如图,O的弦AB=16,OMAB于M,且OM=6,则O的半径等于A8B6C10D208若抛物线yx2+bx+c与x轴只有一个公共点,且过点A(m,n),B(m8,n),则n的值为()
4、A8B12C15D169在平面直角坐标系中,把点绕原点顺时针旋转,所得到的对应点的坐标为( )ABCD10如图,在矩形ABCD中,AB=3,AD=4,若以点A为圆心,以4为半径作A,则下列各点中在A外的是( )A点AB点BC点CD点D11如图,已知直线,直线、与、分别交于点、和、,( )A7B7.5C8D4.512如图,在线段AB上有一点C,在AB的同侧作等腰ACD和等腰ECB,且AC=AD,EC=EB,DAC=CEB,直线BD与线段AE,线段CE分别交于点F,G.对于下列结论:DCGBEG;ACEDCB;GFGB=GCGE;若DAC=CEB=90,则2AD2=DFDG.其中正确的是( )AB
5、CD二、填空题(每题4分,共24分)13已知x=2是方程x2-a=0的解,则a=_14双曲线y1、y2在第一象限的图象如图,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,若SAOB=1,则y2的解析式是 15已知一元二次方程2x25x+1=0的两根为m,n,则m2+n2=_16一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x之间的函数关系已知两车相遇时快车比慢车多行驶60千米若快车从甲地到达乙地所需时间为t时,则此时慢车与甲地相距_千米17用一个半径为10的
6、半圆,围成一个圆锥的侧面,该圆锥的底面圆的半径为_18如图,以正六边形ADHGFE的一边AD为边向外作正方形ABCD,则BED=_三、解答题(共78分)19(8分)已知,如图,是的直径,平分交平点.过点的切线交的延长线于.求证:.20(8分)某报社为了解市民对“社会主义核心价值观”的知晓程度,采取随机抽样的方式进行问卷调查,调查结果分为“A非常了解”“B了解”“C基本了解”三个等级,并根据调查结果制作了如下图所示两幅不完整的统计图(1)这次调查的市民人数为 , , ;(2)补全条形统计图;(3)若该市约有市民1000000人,请你根据抽样调查的结果,估计该市大约有多少人对“社会主义核心价值观”
7、达到“A非常了解”的程度21(8分)如图1,点A(0,8)、点B(2,a)在直线y2x+b上,反比例函数y(x0)的图象经过点B(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m0),得到对应线段CD,连接AC、BD如图2,当m3时,过D作DFx轴于点F,交反比例函数图象于点E,求E点的坐标;在线段AB运动过程中,连接BC,若BCD是等腰三形,求所有满足条件的m的值.22(10分)已知菱形的两条对角线长度之和为40厘米,面积S(单位:cm2)随其中一条对角线的长x(单位:cm)的变化而变化(1)请直接写出S与x之间的函数关系式,并写出自变量x的取值范围(2)当x取何值时,菱形的面积最
8、大,最大面积是多少?23(10分)如图,在ABC中,AD是角平分钱,点E在AC上,且EAD=ADE(1)求证:DCEBCA;(2)若AB=3,AC=1求DE的长24(10分)如图,是的直径,切于点,交于点,平分,连接.(1)求证:;(2)若,求的半径.25(12分)为了备战初三物理、化学实验操作考试,某校对初三学生进行了模拟训练,物理、化学各有3个不同的操作实验题目,物理题目用序号、表示,化学题目用字母a、b、c表示,测试时每名学生每科只操作一个实验,实验的题目由学生抽签确定,第一次抽签确定物理实验题目,第二次抽签确定化学实验题目(1)小李同学抽到物理实验题目这是一个 事件(填“必然”、“不可
9、能”或“随机”)(2)小张同学对物理的、和化学的c号实验准备得较好,请用画树形图(或列表)的方法,求他同时抽到两科都准备得较好的实验题目的概率26某商场试销一种成本为每件60元的服装,经试销发现,每天的销售量(件)与销售单价(元)的关系符合次函数(1)如果要实现每天2000元的销售利润,该如何确定销售单价?(2)销售单价为多少元时,才能使每天的利润最大?其每天的最大利润是多少?参考答案一、选择题(每题4分,共48分)1、B【分析】此题首先要知道在同一时刻任何物体的高与其影子的比值是相同的,所以竹竿的高与其影子的比值和树高与其影子的比值相同,利用这个结论可以求出树高【详解】如图,设BD是BC在地
10、面的影子,树高为x,根据竹竿的高与其影子的比值和树高与其影子的比值相同得而CB=1.2,BD=0.96,树在地面的实际影子长是0.96+2.6=3.56,再竹竿的高与其影子的比值和树高与其影子的比值相同得,x=4.45,树高是4.45m故选B【点睛】抓住竹竿的高与其影子的比值和树高与其影子的比值相同是关键.2、B【解析】根据特殊角的三角函数值求解【详解】故选:B【点睛】本题考查了特殊角的三角函数值,解答本题的关键是熟记几个特殊角的三角函数值3、D【解析】首先证明x1+x2=8,由2x34,推出10 x1+x2+x312即可解决问题.【详解】翻折后的抛物线的解析式为y=(x4)24=x28x+1
11、2,设x1,x2,x3均为正数,点P1(x1,y1),P2(x2,y2)在第四象限,根据对称性可知:x1+x2=8,2x34,10 x1+x2+x312,即10t12,故选D【点睛】本题考查二次函数与x轴的交点,二次函数的性质,抛物线的旋转等知识,熟练掌握和灵活应用二次函数的相关性质以及旋转的性质是解题的关键.4、D【解析】根据只有符号不同的两个数互为相反数,可得答案【详解】2019的相反数是2019,故选D.【点睛】此题考查相反数,掌握相反数的定义是解题关键5、A【分析】直接把已知数据代入进而得出c的值,再解方程求出答案【详解】解:小刚在解关于x的方程ax2+bx+c=0(a0)时,只抄对了
12、a=1,b=4,解出其中一个根是x=-1,(-1)2-4+c=0,解得:c=3,所抄的c比原方程的c值小2故原方程中c=5,即方程为:x2+4x+5=0则b2-4ac=16-415=-40,则原方程的根的情况是不存在实数根故选:A【点睛】此题主要考查了方程解的定义和根的判别式,利用有根必代的原则正确得出c的值是解题关键6、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;B、从一副完整扑克牌中任抽一张,恰好抽到红桃,是随机事件故本选项错误;C、今天太阳从西边升起,是不可能事件,故本选
13、项错误;D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确故选:D【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件7、C【分析】连接OA,即可证得OMA是直角三角形,根据垂径定理即可求得AM,根据勾股定理即可求得OA的长,即O的半径【详解】连接OA,M是AB的中点,OMAB,且AM=8,在RtOAM中,OA=1故选C【点睛】本题主要考查了垂径定理,以及勾股定理,根据垂径定理求得AM的长,
14、证明OAM是直角三角形是解题的关键8、D【分析】由题意b24c0,得b24c,又抛物线过点A(m,n),B(m8,n),可知A、B关于直线x对称,所以A(+4,n),B(4,n),把点A坐标代入yx2+bx+c,化简整理即可解决问题【详解】解:由题意b24c0,b24c,又抛物线过点A(m,n),B(m8,n),A、B关于直线x对称,A(+4,n),B(4,n),把点A坐标代入yx2+bx+c,n(+4)2+b(+4)+cb2+1+c,b24c,n1故选:D【点睛】本题考查二次函数的性质,关键在于熟悉性质,灵活运用.9、C【分析】根据题意得点P点P关于原点的对称,然后根据关于原点对称的点的坐标
15、特点即可得解.【详解】P点坐标为(3,-2),P点的原点对称点P的坐标为(-3,2)故选C【点睛】本题主要考查坐标与图形变化-旋转,解此题的关键在于熟练掌握其知识点.10、C【解析】试题分析:根据勾股定理求出AC的长,进而得出点B,C,D与A的位置关系解:连接AC,AB=3cm,AD=4cm,AC=5cm,AB=34,AD=4=4,AC=54,点B在A内,点D在A上,点C在A外故选C考点:点与圆的位置关系11、D【分析】根据平行线分线段成比例定理,列出比例式解答即可.【详解】 即: 故选:D【点睛】本题考查的是平行线分线段成比例定理,掌握定理的内容并能正确的列出比例式是关键.12、A【解析】利
16、用三角形的内角和定理及两组角分别相等证明正确;根据两组边成比例夹角相等判断正确;利用的相似三角形证得AEC=DBC,又对顶角相等,证得正确;根据ACEDCB证得F、E、B、C四点共圆,由此推出DCFDGC,列比例线段即可证得正确.【详解】正确;在等腰ACD和等腰ECB中AC=AD,EC=EB,DAC=CEB,ACD=ADC=BCE=BEC,DCG=180-ACD-BCE=BEC,DGC=BGE,DCGBEG;正确;ACD+DCG=BCE+DCG,ACE=DCB,ACEDCB;正确;ACEDCB,AEC=DBC,FGE=CGB,FGECGB,GFGB=GCGE;正确;如图,连接CF,由可得ACE
17、DCB,AEC=DBC,F、E、B、C四点共圆,CFB=CEB=90,ACD=ECB=45,DCE=90,DCFDGC,2AD2=DFDG.故选:A.【点睛】此题考查相似三角形的判定及性质,等腰三角形的性质,的证明可通过的相似推出所需要的条件继而得到证明;是本题的难点,需要重新画图,并根据条件判定DF、DG所在的三角形相似,由此可判断连接CF,由此证明F、E、B、C四点共圆,得到CFB=CEB=90是解本题关键.二、填空题(每题4分,共24分)13、4【分析】将x=2代入方程计算即可求出a的值【详解】解:将x=2代入方程得:4-a=0,解得:a=4,故答案为:4.【点睛】本题考查了一元二次方程
18、的解,方程的解即为能使方程左右两边相等的未知数的值14、y2=【分析】根据,过y1上的任意一点A,得出CAO的面积为2,进而得出CBO面积为3,即可得出y2的解析式【详解】解:,过y1上的任意一点A,作x轴的平行线交y2于B,交y轴于C,SAOB=1,CBO面积为3,xy=6,y2的解析式是:y2=故答案为:y2=15、【分析】先由根与系数的关系得:两根和与两根积,再将m2+n2进行变形,化成和或积的形式,代入即可【详解】由根与系数的关系得:m+n=,mn=,m2+n2=(m+n)2-2mn=()2-2=,故答案为【点睛】本题考查了利用根与系数的关系求代数式的值,先将一元二次方程化为一般形式,
19、写出两根的和与积的值,再将所求式子进行变形;如、x12+x22等等,本题是常考题型,利用完全平方公式进行转化16、【分析】求出相遇前y与x的关系式,确定出甲乙两地的距离,进而求出两车的速度,即可求解【详解】设AB所在直线的解析式为:ykx+b,把(1.5,70)与(2,0)代入得: ,解得:,AB所在直线的解析式为:y-140 x+280,令x0,得到y280,即甲乙两地相距280千米,设两车相遇时,乙行驶了x千米,则甲行驶了(x+60)千米,根据题意得:x+x+60280,解得:x110,即两车相遇时,乙行驶了110千米,甲行驶了170千米,甲车的速度为85千米/时,乙车速度为55千米/时,
20、根据题意得:28055(28085)(千米)则快车到达乙地时,慢车与甲地相距千米故答案为:【点睛】本题主要考查根据函数图象的信息解决行程问题,根据函数的图象,求出AB所在直线的解析式是解题的关键.17、5【解析】试题解析:半径为10的半圆的弧长为:210=10围成的圆锥的底面圆的周长为10设圆锥的底面圆的半径为r,则2r=10解得r=518、45【详解】正六边形ADHGFE的内角为120,正方形ABCD的内角为90,BAE=360-90-120=150,AB=AE,BEA=(180-150)2=15,DAE=120,AD=AE,AED=(180-120)2=30,BED=15+30=45三、解
21、答题(共78分)19、详见解析.【分析】连接,由切线的性质可知ODE=90,证ODAE即可解决问题;【详解】连接.是的切线,平分,.【点睛】本题考查切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型20、(1)500 ,12,32;(2)详见解析;(3)320000【分析】(1)根据B等级的人数及其所占的百分比可求得本次调查的总人数,然后根据C等级的人数可求出其所占的百分比,进而根据各部分所占的百分比之和为1可求出A等级的人数所占的百分比,即可得出m,n的值;(2)根据(1)中的结果可以求得A等级的人数,从而可以将条形统计图补充完整;(3)根据A等级的人数所占
22、的百分比,利用样本估计总体即“1000000A等级人数所占的百分比”可得出结果【详解】解:(1)本次调查的人数为:28056%=500(人),又m%=100%=12%,n%=1-56%-12%=32%故答案为:500;12;32;(2)选择A的学生有:500-280-60=160(人),补全的条形统计图,如图所示:(3)100000032%=320000(人)答:该市大约有320000人对“社会主义核心价值观”达到“A非常了解”的程度【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,读懂统计图21、 (1)a4,k=8;(2)E(5,);满足条件的m的值为4或5
23、或2.【分析】(1)把点A坐标代入直线AB的解析式中,求出a,求出点B坐标,再将点B坐标代入反比例函数解析式中求出k;(2)确定出点D(5,4),得到求出点E坐标;先表示出点C,D坐标,再分三种情况:当BCCD时,判断出点B在AC的垂直平分线上,即可得出结论,当BCBD时,表示出BC,用BCBD建立方程求解即可得出结论,当BDAB时,mAB,根据勾股定理计算即可.【详解】解:(1)点A(0,8)在直线y2x+b上,20+b8,b8,直线AB的解析式为y2x+8,将点B(2,a)代入直线AB的解析式y2x+8中,得22+8a,a4,B(2,4),将B(2,4)代入反比例函数解析式y(x0)中,得
24、kxy248;(2)由(1)知,B(2,4),k8,反比例函数解析式为y,当m3时,将线段AB向右平移3个单位长度,得到对应线段CD,D(2+3,4),即D(5,4),DFx轴于点F,交反比例函数y的图象于点E,E(5,);如图,将线段AB向右平移m个单位长度(m0),得到对应线段CD,CDAB,ACBDm,A(0,8),B(2,4),C(m,8),D(m+2,4),BCD是等腰三形,当BCCD时,BCAB,点B在线段AC的垂直平分线上,m224,当BCBD时,B(2,4),C(m,8),m5,当BDAB时,综上所述,BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.【点睛】此题是
25、反比例函数综合题,主要考查了待定系数法,平移的性质,等腰三角形的性质,线段的垂直平分线的性质,用方程的思想解决问题是解本题的关键22、(1)Sx2+20 x,0 x40;(2)当x20时,菱形的面积最大,最大面积是1【分析】(1)直接利用菱形面积公式得出S与x之间的关系式;(2)利用配方法求出最值即可【详解】(1)由题意可得:,x为对角线的长,x0,40 x0,即0 x40;(2),即当x20时,菱形的面积最大,最大面积是1【点睛】本题考查二次函数的应用,熟练掌握菱形的性质,建立二次函数模型是解题的关键23、(1)、证明过程见解析;(2)、【解析】试题分析:(1)已知AD平分BAC,可得EAD=ADE,再由EAD=ADE,可得BAD=ADE,即可得ABDE,从而得DCEBCA;(2)已知EAD=ADE,由三角形的性质可得AE=DE,设DE=x,所以CE=ACAE=ACDE=1x,由(1)可知DCEBCA,根据相似三角形的对应
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校员工之家管理制度
- 在建筑公司学管理制度
- 员工宿舍加班管理制度
- 大学宿舍用电管理制度
- 安保设备设施管理制度
- 外联单位用餐管理制度
- 员工核心人员管理制度
- 天津医保医院管理制度
- 婚庆公司内部管理制度
- 粘土矿生产线项目可行性研究报告(仅供参考)
- SH/T 3533-2024 石油化工给水排水管道工程施工及验收规范(正式版)
- 用友人力资源管理HR解决方案样本
- 北京市西城区三帆中学2023-2024学年七年级下学期期中数学试题(无答案)
- 药物残留溶剂分析报告书
- 肿瘤医院推广方案
- 动物出血性肺炎预防与治疗
- 公路工程安全风险辨识与防控手册
- 研究生开题报告评审表
- 统编版语文二年级下册《黄帝的传说》教学课件
- 海南大学本科毕业论文正文范文
- SCA涂胶机定量机维护作业指导书
评论
0/150
提交评论