湖南省长沙市长郡双语实验中学2023学年九年级数学第一学期期末联考试题含解析_第1页
湖南省长沙市长郡双语实验中学2023学年九年级数学第一学期期末联考试题含解析_第2页
湖南省长沙市长郡双语实验中学2023学年九年级数学第一学期期末联考试题含解析_第3页
湖南省长沙市长郡双语实验中学2023学年九年级数学第一学期期末联考试题含解析_第4页
湖南省长沙市长郡双语实验中学2023学年九年级数学第一学期期末联考试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1、2023学年九上数学期末模拟试卷考生须知:1全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1如图,AB是O的弦,ODAB于D交O于E,则下列说法错误的是( )AAD=BDBACB=AOEC弧AE=弧BEDOD=DE2已知二次函数(a0)的图象如图所示,则下列结论:b0,c0;a+b+c0;方程的两根之和大于0;ab+c0,其中正确的

2、个数是( )A4个B3个C2个D1个3下列事件中是必然事件的是( )A打开电视正在播新闻B随机抛掷一枚质地均匀的硬币,落地后正面朝上C在等式两边同时除以同一个数(或式子),结果仍相等D平移后的图形与原图形中的对应线段相等4在平面直角坐标系中,点P(1,2)关于原点的对称点的坐标为()A(1,2) B(1,2) C(2,1) D(2,1)5方程x2+x-12=0的两个根为()Ax1=-2,x2=6Bx1=-6,x2=2Cx1=-3,x2=4Dx1=-4,x2=36在平面直角坐标系中,二次函数的图像向右平移2个单位后的函数为( )ABCD7如图,42的正方形的网格中,在A,B,C,D四个点中任选三

3、个点,能够组成等腰三角形的概率为( )A1BCD8下列命题是真命题的个数是( )64的平方根是;,则;三角形三条内角平分线交于一点,此点到三角形三边的距离相等;三角形三边的垂直平分线交于一点A1个B2个C3个D4个9关于x的方程x2mx+60有一根是3,那么这个方程的另一个根是( )A5B5C2D210如图,平行四边形ABCD中,ACAB,点E为BC边中点,AD=6,则AE的长为( )A2B3 C4 D 5二、填空题(每小题3分,共24分)11若,则=_12如图,在RtABC中,ACB=90,AC=4,BC=3,D是以点A为圆心2为半径的圆上一点,连接BD,M为BD的中点,则线段CM长度的最小

4、值为_13如图,直线a、b与、分别相交于点A、B、C和点D、E、F若AB=3,BC=5,DE=4,则EF的长为_14如图,在RtABC中,ACB90,CDAB于点D,如果CD4,那么ADBD的值是_15如图所示是某种货号的直三棱柱(底面是等腰直角三角形)零件的三视图,则它的表面积为_16如图,一组等距的平行线,点A、B、C分别在直线l1、l6、l4上,AB交l3于点D,AC交l3于点E,BC交于l5点F,若DEF的面积为1,则ABC的面积为_17在平面直角坐标系中,与位似,位似中心为原点,点与点是对应顶点,且点A,点的坐标分别是,那么与的相似比为_18在RtABC中,则的值等于_三、解答题(共

5、66分)19(10分)如图,AB是O的直径,点C是圆周上一点,连接AC、BC,以点C为端点作射线CD、CP分别交线段AB所在直线于点D、P,使12A(1)求证:直线PC是O的切线;(2)若CD4,BD2,求线段BP的长20(6分)解方程(2x+1)2=3(2x+1)21(6分)如图,点是等边中边的延长线上的一点,且以为直径作,分别交、于点、(1)求证:是的切线;(2)连接,交于点,若,求线段、与围成的阴影部分的面积(结果保留根号和)22(8分)已知:在平面直角坐标系中,抛物线()交x轴于A、B两点,交y轴于点C,且对称轴为直线x=-2 .(1)求该抛物线的解析式及顶点D的坐标;(2)若点P(0

6、,t)是y轴上的一个动点,请进行如下探究:探究一:如图1,设PAD的面积为S,令WtS,当0t4时,W是否有最大值?如果有,求出W的最大值和此时t的值;如果没有,说明理由;探究二:如图2,是否存在以P、A、D为顶点的三角形与RtAOC相似?如果存在,求点P的坐标;如果不存在,请说明理由23(8分)如图,已知抛物线的对称轴为直线,且抛物线与轴交于、两点,与轴交于点,其中,.(1)若直线经过、两点,求直线和抛物线的解析式;(2)在抛物线的对称轴上找一点,使点到点的距离与到点的距离之和最小,求出点的坐标;(3)设点为抛物线的对称轴上的一个动点,求使为直角三角形的点的坐标.24(8分)如图,点B、C、

7、D都在O上,过点C作ACBD交OB延长线于点A,连接CD,且CDB=OBD=30,DB=cm(1)求证:AC是O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积(结果保留)25(10分)如图,已知反比例函数(x 0,k是常数)的图象经过点A(1,4),点B(m , n),其中m1, AMx轴,垂足为M,BNy轴,垂足为N,AM与BN的交点为C(1)写出反比例函数解析式;(2)求证:ACBNOM;(3)若ACB与NOM的相似比为2,求出B点的坐标及AB所在直线的解析式26(10分)A、B两地间的距离为15千米,甲从A地出发步行前往B地,20分钟后,乙从 B地出发骑车前往A地,且乙骑车

8、比甲步行每小时多走10千米乙到达A地后停留40分钟,然后骑车按原路原速返回,结果甲、乙两人同时到达B地求甲从A地到B地步行所用的时间参考答案一、选择题(每小题3分,共30分)1、D【解析】由垂径定理和圆周角定理可证,ADBD,ADBD,AEBE,而点D不一定是OE的中点,故D错误【详解】ODAB,由垂径定理知,点D是AB的中点,有ADBD,,AOB是等腰三角形,OD是AOB的平分线,有AOE12AOB,由圆周角定理知,C12AOB,ACBAOE,故A、 B、C正确,而点D不一定是OE的中点,故错误.故选D.【点睛】本题主要考查圆周角定理和垂径定理,熟练掌握这两个定理是解答此题的关键.2、B【解

9、析】试题分析:抛物线开口向下,a0,抛物线对称轴x0,且抛物线与y轴交于正半轴,b0,c0,故错误;由图象知,当x=1时,y0,即a+b+c0,故正确,令方程的两根为、,由对称轴x0,可知0,即0,故正确;由可知抛物线与x轴的左侧交点的横坐标的取值范围为:1x0,当x=1时,y=ab+c0,故正确故选B考点:二次函数图象与系数的关系3、D【分析】根据事件发生的可能性大小判断相应事件,从而可得答案【详解】解:A、打开电视正在播新闻是随机事件;B、随机抛掷一枚质地均匀的硬币,落地后正面朝上是随机事件;C、在等式两边同时除以同一个数(或式子),结果仍相等是随机事件; D、平移后的图形与原图形中的对应

10、线段相等是必然事件; 故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件4、B【解析】用关于原点的对称点的坐标特征进行判断即可.【详解】点P(-1,2)关于原点的对称点的坐标为(1,-2),故选: B.【点睛】根据两个点关于原点对称时, 它们的坐标符号相反.5、D【解析】试题分析:将x2+x12分解因式成(x+4)(x1),解x+4=0或x1=0即可得出结论x2+x12=(x+4)(x1)=0, 则x+4=0,或x1=0, 解得:x1

11、=4,x2=1考点:解一元二次方程-因式分解法6、B【分析】根据“左加右减,上加下减”的规律,求出平移后的函数表达式即可;【详解】解:根据“左加右减,上加下减”得,二次函数的图像向右平移2个单位为:;故选B.【点睛】本题主要考查了二次函数与几何变换,掌握二次函数与几何变换是解题的关键.7、B【分析】根据题意,先列举所有的可能结果,然后选取能组成等腰三角形的结果,根据概率公式即可求出答案【详解】解:根据题意,在A,B,C,D四个点中任选三个点,有:ABC、ABD、ACD、BCD,共4个三角形;其中是等腰三角形的有:ACD、BCD,共2个;能够组成等腰三角形的概率为:;故选:B【点睛】本题考查了列

12、举法求概率,等腰三角形的性质,勾股定理与网格问题,解题的关键是熟练掌握列举法求概率,以及正确得到等腰三角形的个数8、C【分析】分别根据平方根、等式性质、三角形角平分线、线段垂直平分线性质进行分析即可.【详解】64的平方根是,正确,是真命题;,则不一定,可能;故错误;根据角平分线性质,三角形三条内角平分线交于一点,此点到三角形三边的距离相等;是真命题;根据三角形外心定义,三角形三边的垂直平分线交于一点,是真命题;故选:C【点睛】考核知识点:命题的真假.理解平方根、等式性质、三角形角平分线、线段垂直平分线性质是关键.9、C【分析】根据两根之积可得答案【详解】设方程的另一个根为a,关于x的方程x2m

13、x+6=0有一根是3,3a=6,解得a=2,故选:C【点睛】本题主要考查了根与系数的关系,一元二次方程的根与系数的关系:若方程两个为,则10、B【解析】由平行四边形得AD=BC,在RtBAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:四边形ABCD是平行四边形,AD=BC=6,ACAB,BAC为RtBAC,点E为BC边中点, AE=BC=.故选B.二、填空题(每小题3分,共24分)11、【分析】把所求比例形式进行变形,然后整体代入求值即可【详解】,;故答案为【点睛】本题主要考查比例的性质,熟练掌握比例的方法是解题的关键12、【分析】作AB的中点E,连接EM,CE,

14、AD根据三角形中位线的性质和直角三角形斜边中线等于斜边一半求出EM和CE长,再根据三角形的三边关系确定CM长度的范围,从而确定CM的最小值.【详解】解:如图,取AB的中点E,连接CE,ME,AD,E是AB的中点,M是BD的中点,AD=2,EM为BAD的中位线, ,在RtACB中,AC=4,BC=3,由勾股定理得,AB= CE为RtACB斜边的中线,,在CEM中, ,即,CM的最大值为 .故答案为:.【点睛】本题考查了圆的性质,直角三角形的性质及中位线的性质,利用三角形三边关系确定线段的最值问题,构造一个以CM为边,另两边为定值的的三角形是解答此题的关键和难点.13、【分析】直接根据平行线分线段

15、成比例定理即可得【详解】,解得,故答案为:【点睛】本题考查了平行线分线段成比例定理,熟记平行线分线段成比例定理是解题关键14、1【分析】先由角的互余关系,导出DCAB,结合BDCCDA90,证明BCDCAD,利用相似三角形的性质,列出比例式,变形即可得答案【详解】解:ACB90,CDAB于点D,BCD+DCA90,B+BCD90DCAB,又BDCCDA90,BCDCAD,BD:CDCD:AD,ADBDCD2421,故答案为:1【点睛】本题主要考查相似三角形的判定和性质,解决本题的关键是要熟练掌握相似三角形的判定和性质.15、 (28+20)【分析】根据三视图可知,直三棱柱的底面是斜边为4厘米、

16、斜边上的高为2厘米的等腰直角三角形,直三棱柱的高是5厘米的立体图形,根据表面积计算公式即可求解【详解】直三棱柱的底面如下图,根据三视图可知,为等腰直角三角形,斜边上的高为2厘米,根据等腰三角形三线合一的性质得:,它的表面积为:(平方厘米)故答案为:【点睛】考查了由三视图判断几何体,几何体的表面积,关键是得到直三棱柱的底面三角形各边的长16、【分析】在三角形中由同底等高,同底倍高求出,根据平行线分线段成比例定理,求出,最后由三角形的面积的和差法求得【详解】连接DC,设平行线间的距离为h,AD=2a,如图所示:,SDEF=SDEA,又SDEF=1,SDEA=1,同理可得:,又SADC=SADE+S

17、DEC,又平行线是一组等距的,AD=2a,BD=3a,设C到AB的距离为k,ak,又SABC=SADC+SBDC,故答案为:【点睛】本题综合考查了平行线分线段成比例定理,平行线间的距离相等,三角形的面积求法等知识,重点掌握平行线分线段成比例定理,难点是作辅助线求三角形的面积17、2【分析】分别求出OA和OA1的长度即可得出答案.【详解】根据题意可得,所以相似比=,故答案为2.【点睛】本题考查的是位似,属于基础图形,位似图形上任意一对对应点到位似中心的距离之比等于相似比.18、【分析】首先由勾股定理求出另一直角边AC的长度,再利用锐角三角函数的定义求解【详解】在RtABC中,C=90,AB=10

18、,BC=8,故答案为:【点睛】本题主要考查了锐角三角函数的定义:在直角三角形中,锐角的余弦为邻边比斜边三、解答题(共66分)19、(1)详见解析;(2)【分析】(1)连接OC,由AB是O的直径证得ACO+BCO90,由OA=OC证得2A=ACO,由此得到PCO90,即证得直线PC是O的切线;(2)利用1A证得CDB90,得到CD2ADBD,求出AD,由此求得AB=10,OB=5;在由OCP90推出OC2ODOP,求出OP,由此求得线段BP的长.【详解】(1)连接OC,AB是O的直径,ACB90,ACO+BCO90,OAOC,AACO,A12,2ACO,2+BCO90,PCO90,OCPC,直线

19、PC是O的切线;(2)ACB90,A+ABC901A,1+ABC90,CDB90,CD2ADBD,CD4,BD2,AD8,AB10,OCOB5,OCP90,CDOP,OC2ODOP,52(52)OP,OP,PBOPOB【点睛】此题是圆的综合题,考查圆的切线的判定定理,圆中射影定理的判定及性质,(2)中求出CDB90是此题解题的关键,由此运用射影定理求出线段的长度.20、x1=-,x2=1【解析】试题分析:分解因式得出(2x+1)(2x+13)=0,推出方程2x+1=0,2x+13=0,求出方程的解即可试题解析:解:整理得:(2x+1)23(2x+1)=0,分解因式得:(2x+1)(2x+13)

20、=0,即2x+1=0,2x+13=0,解得:x1=,x2=1点睛:本题考查了解一元一次方程和解一元二次方程的应用,解答此题的关键是把一元二次方程转化成解一元一次方程,题目比较典型,难度不大21、(1)详见解析;(2)【分析】(1)已知ABC为等边三角形,可得AC=BC,又因AC=CD,所以AC=BC=CD,即可判定ABD为直角三角形,再根据切线的判定推出结论;(2)连接OE,分别求出AOE、AOC,扇形OEG的面积,根据 即可求得S【详解】(1)证明:为等边三角形,又,为直径,是的切线,(2)解:连接,是等边三角形,是边长为的等边三角形,由勾股定理,得,同理等边三角形中边上的高是,【点睛】本题

21、考查了切线的判定;等边三角形的判定与性质;扇形面积的计算,掌握切线的判定;等边三角形的判定与性质;扇形面积的计算是解题的关键22、(1), D(-2,4)(2)当t=3时,W有最大值,W最大值=1存在只存在一点P(0,2)使RtADP与RtAOC相似【解析】(1)由抛物线的对称轴求出a,就得到抛物线的表达式了;(2)下面探究问题一,由抛物线表达式找出A,B,C三点的坐标,作DMy轴于M,再由面积关系:SPAD=S梯形OADM-SAOP-SDMP得到t的表达式,从而W用t表示出来,转化为求最值问题难度较大,运用分类讨论思想,可以分三种情况:(1)当P1DA=90时;(2)当P2AD=90时;(3

22、)当AP3D=90时。【详解】解:(1)抛物线y=ax2-x+3(a0)的对称轴为直线x=-2D(-2,4)(2)探究一:当0t4时,W有最大值抛物线交x轴于A、B两点,交y轴于点C,A(-6,0),B(2,0),C(0,3),OA=6,OC=3当0t4时,作DMy轴于M,则DM=2,OM=4P(0,t),OP=t,MP=OM-OP=4-tS三角形PAD=S梯形OADM-S三角形AOP-S三角形DMP=12-2tW=t(12-2t)=-2(t-3)2+1当t=3时,W有最大值,W最大值=1探究二:存在分三种情况:当P1DA=90时,作DEx轴于E,则OE=2,DE=4,DEA=90,AE=OA

23、-OE=6-2=4=DEDAE=ADE=45,P1DE=P1DA-ADE=90-45=45度DMy轴,OAy轴,DMOA,MDE=DEA=90,MDP1=MDE-P1DE=90-45=45度P1M=DM=2,此时又因为AOC=P1DA=90,RtADP1RtAOC,OP1=OM-P1M=4-2=2,P1(0,2)当P1DA=90时,存在点P1,使RtADP1RtAOC,此时P1点的坐标为(0,2)当P2AD=90时,则P2AO=45,P2AD与AOC不相似,此时点P2不存在当AP3D=90时,以AD为直径作O1,则O1的半径圆心O1到y轴的距离d=4dr,O1与y轴相离不存在点P3,使AP3D

24、=90度综上所述,只存在一点P(0,2)使RtADP与RtAOC相似23、(1)抛物线的解析式为,直线的解析式为.(2);(3)的坐标为或或或.【解析】分析:(1)先把点A,C的坐标分别代入抛物线解析式得到a和b,c的关系式,再根据抛物线的对称轴方程可得a和b的关系,再联立得到方程组,解方程组,求出a,b,c的值即可得到抛物线解析式;把B、C两点的坐标代入直线y=mx+n,解方程组求出m和n的值即可得到直线解析式;(2)设直线BC与对称轴x=-1的交点为M,此时MA+MC的值最小把x=-1代入直线y=x+3得y的值,即可求出点M坐标;(3)设P(-1,t),又因为B(-3,0),C(0,3),

25、所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三种情况分别讨论求出符合题意t值即可求出点P的坐标详解:(1)依题意得:,解得:,抛物线的解析式为.对称轴为,且抛物线经过,把、分别代入直线,得,解之得:,直线的解析式为.(2)直线与对称轴的交点为,则此时的值最小,把代入直线得,.即当点到点的距离与到点的距离之和最小时的坐标为.(注:本题只求坐标没说要求证明为何此时的值最小,所以答案未证明的值最小的原因).(3)设,又,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,若点为直角顶点,则,即:解得:,.综上所述的坐标为或或或.点睛:本题综合考查了二次函数的图象与性质、待定系数法求函数(二次函数和一次函数)的解析式、利用轴对称性质确定线段的最小长度、难度不是很大,是一道不错的中考压轴题24、(3)证明见解析;(3)2cm3【分析】连接BC,OD,OC,设OC与BD交于点M(3)求出COB的度数,求出A的度数,根据三角形的内角和定理求出OCA的度数,根据切线的判定推出即可;(3)证明CDMOBM,从而得到S阴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论