2021-2022学年广东省肇庆市某学校数学高职单招试题(含答案)_第1页
2021-2022学年广东省肇庆市某学校数学高职单招试题(含答案)_第2页
2021-2022学年广东省肇庆市某学校数学高职单招试题(含答案)_第3页
2021-2022学年广东省肇庆市某学校数学高职单招试题(含答案)_第4页
2021-2022学年广东省肇庆市某学校数学高职单招试题(含答案)_第5页
免费预览已结束,剩余21页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2021-2022学年广东省肇庆市某学校数学高职单招试题(含答案)一、单选题(20题)1.下列四组函数中表示同一函数的是()A.y=x与y=

B.y=2lnx与y=lnx2

C.y=sinx与y=cos()

D.y=cos(2π-x)与y=sin(π-x)

2.A.3

B.8C.3.已知甲、乙、丙3类产品共1200件,且甲、乙、丙3类产品的数量之比为3:4:5,现采用分层抽样的方法从中抽取60件,则乙类产品抽取的件数是()A.20B.21C.25D.404.集合M={a,b},N={a+1,3},a,b为实数,若M∩N={2},则M∪N=()A.{0,1,2}B.{0,1,3}C.{0,2,3}D.{1,2,3}5.已知等差数列的前n项和是,若,则等于()A.

B.

C.

D.

6.设a=1/2,b=5-1/2则()A.a>bB.a=bC.a<bD.不能确定7.椭圆9x2+16y2=144短轴长等于()A.3B.4C.6D.88.设全集={a,b,c,d},A={a,b}则C∪A=()A.{a,b}B.{a,c}C.{a,d)D.{c,d}9.tan150°的值为()A.

B.

C.

D.

10.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.12011.袋中装有4个大小形状相同的球,其中黑球2个,白球2个,从袋中随机抽取2个球,至少有一个白球的概率为()A.

B.

C.

D.

12.函数y=的定义域是()A.(-2,2)B.[-2,2)C.(-2,2]D.[-2,2]13.A.AB.BC.CD.D14.若a,b两直线异面垂直,b,c两直线也异面垂直,则a,c的位置关系()A.平行B.相交、异面C.平行、异面D.相交、平行、异面15.下列函数为偶函数的是A.B.C.16.不等式4-x2<0的解集为()A.(2,+∞)B.(-∞,2)C.(-2,2)D.(―∞,一2)∪(2,+∞)17.若函数y=log2(x+a)的反函数的图像经过点P(-1,0),则a的值为()A.-2

B.2

C.

D.

18.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.1219.不等式-2x2+x+3<0的解集是()A.{x|x<-1}B.{x|x>3/2}C.{x|-1<x<3/2}D.{x|x<-1或x>3/2}20.下列函数中,在区间(0,)上是减函数的是()A.y=sinxB.y=cosxC.y=xD.y=lgx二、填空题(10题)21.22.23.24.25.等比数列中,a2=3,a6=6,则a4=_____.26.椭圆9x2+16y2=144的短轴长等于

。27.28.双曲线x2/4-y2/3=1的虚轴长为______.29.已知α为第四象限角,若cosα=1/3,则cos(α+π/2)=_______.30.函数f(x)=sin(x+φ)-2sinφcosx的最大值为_____.三、计算题(10题)31.在等差数列{an}中,前n项和为Sn,且S4=-62,S6=-75,求等差数列{an}的通项公式an.32.己知直线l与直线y=2x+5平行,且直线l过点(3,2).(1)求直线l的方程;(2)求直线l在y轴上的截距.33.求焦点x轴上,实半轴长为4,且离心率为3/2的双曲线方程.34.甲、乙两人进行投篮训练,己知甲投球命中的概率是1/2,乙投球命中的概率是3/5,且两人投球命中与否相互之间没有影响.(1)若两人各投球1次,求恰有1人命中的概率;(2)若两人各投球2次,求这4次投球中至少有1次命中的概率.35.有语文书3本,数学书4本,英语书5本,书都各不相同,要把这些书随机排在书架上.(1)求三种书各自都必须排在一起的排法有多少种?(2)求英语书不挨着排的概率P。36.近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为“厨余垃圾”、“可回收垃圾”、“有害垃圾”和“其他垃圾”等四类,并分别垛置了相应的垃圾箱,为调查居民生活垃圾的正确分类投放情况,现随机抽取了该市四类垃圾箱总计100吨生活垃圾,数据统计如下(单位:吨):(1)试估计“可回收垃圾”投放正确的概率;(2)试估计生活垃圾投放错误的概率。37.某小组有6名男生与4名女生,任选3个人去参观某展览,求(1)3个人都是男生的概率;(2)至少有两个男生的概率.38.有四个数,前三个数成等差数列,公差为10,后三个数成等比数列,公比为3,求这四个数.39.设函数f(x)既是R上的减函数,也是R上的奇函数,且f(1)=2.(1)求f(-1)的值;(2)若f(t2-3t+1)>-2,求t的取值范围.40.己知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,求公差d.四、证明题(5题)41.己知sin(θ+α)=sin(θ+β),求证:42.43.如图所示,四棱锥中P-ABCD,底面ABCD为矩形,点E为PB的中点.求证:PD//平面ACE.44.己知直线l:x+y+4=0且圆心为(1,-1)的圆C与直线l相切。证明:圆C的标准方程为(x-1)2+(y+1)2=8.45.己知x∈(1,10),A=lg2x,B=lgx2,证明:A<B.五、综合题(5题)46.己知点A(0,2),5(-2,-2).(1)求过A,B两点的直线l的方程;(2)己知点A在椭圆C:上,且(1)中的直线l过椭圆C的左焦点。求椭圆C的标准方程.47.48.己知椭圆与抛物线y2=4x有共同的焦点F2,过椭圆的左焦点F1作倾斜角为的直线,与椭圆相交于M、N两点.求:(1)直线MN的方程和椭圆的方程;(2)△OMN的面积.49.在△ABC中,角A,B,C的对边分别为a,b,c,且bcosC=(3a-c)cosB.(1)求cosB的值;(2)50.

(1)求该直线l的方程;(2)求圆心该直线上且与两坐标轴相切的圆的标准方程.六、解答题(5题)51.52.已知等比数列{an},a1=2,a4=16.(1)求数列{an}的通项公式;(2)求数列{nan}的前n项和{Sn}.53.54.如图,在四棱锥P-ABCD中,PC丄平面ABCD,AB//DC,DC丄AC.(1)求证:DC丄平面PAC;(2)求证:平面PAB丄平面PAC.55.成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{bn}中的b3,b4,b5(1)求数列{bn}的通项公式;(2)数列{bn}的前n项和为Sn,求证:数列{Sn+5/4}是等比数列

参考答案

1.Ccos(3π/2+x)=cos(π/2-x)=sinx,所以选项C表示同一函数。

2.A

3.A分层抽样方法.采用分层抽样的方法,乙类产品抽取的件数是60×4/3+4+5=20.

4.D集合的运算.∵M∩N=2,∴2∈M,2∈N.∴a+l=2,即a=1.又∵M={a,b},∴b=2.AUB={1,2,3}.

5.D设t=2n-1,则St=t(t+1+1)=t(t+2),故Sn=n(n+2)。

6.A数值的大小判断

7.C

8.D集合的运算.C∪A={c,d}.

9.B三角函数诱导公式的运用.tan150°=tan(180°-30°)=-tan30°=

10.B

11.D从中随即取出2个球,每个球被取到的可能性相同,因此所有的取法为,所取出的的2个球至少有1个白球,所有的取法为,由古典概型公式可知P=5/6.

12.C自变量x能取到2,但是不能取-2,因此答案为C。

13.C

14.Da,c与b均为异面垂直,c与a有可能相交、平行和异面,

15.A

16.D不等式的计算.4-x2<0,x2-4>0即(x-2)(x+2)>0,x>2或x<-2.

17.D

18.C

19.D一元二次不等式方程的计算.-2x2+x+3<0,2x2-x-3>0即(2x-3)(x+1)>0,x>3/2或x<-1.

20.B,故在(0,π/2)是减函数。21.π/222.-1623.5

24.

25.,由等比数列性质可得a2/a4=a4/a6,a42=a2a6=18,所以a4=.

26.27.(-7,±2)28.2双曲线的定义.b2=3,.所以b=.所以2b=2.

29.利用诱导公式计算三角函数值.∵α为第四象限角,∴sinα-30.1.三角函数最值.因f(x)=sinxcosφ+cosxsinφ-2sinφcosx=sinxcosφ-cosxsinφ=sin(x-φ)≤1,故函数f(x)==sin(x+φ)-2sinφcosx的最大值为1.31.解:设首项为a1、公差为d,依题意:4a1+6d=-62;6a1+15d=-75解得a1=-20,d=3,an=a1+(n-1)d=3n-2332.解:(1)设所求直线l的方程为:2x-y+c=0∵直线l过点(3,2)∴6-2+c=0即c=-4∴所求直线l的方程为:2x

-y-4=0(2)∵当x=0时,y=-4∴直线l在y轴上的截距为-433.解:实半轴长为4∴a=4e=c/a=3/2,∴c=6∴a2=16,b2=c2-a2=20双曲线方程为

34.

35.

36.

37.

38.39.解:(1)因为f(x)=在R上是奇函数所以f(-x)=-f(x),f(-1)=-f(1)=-2(2)f(t2-3t+1)>-2=f(-1)因为f(x)=在R上是减函数,t2-3t+1<-1所以1<t<2

40.

41.

42.

43.∴PD//平面ACE.

44.45.证明:考虑对数函数y=lgx的限制知:当x∈(1,10)时,y∈(0,1)A-B=lg2

x-lgx2

=lgx·lgx-2lgx=lgx(lgx-2)∵lgx

(0,1)∴lgx-2<0A-B∴A<B46.解:(1)直线l过A(0,2),B(-2,-2)两点,根据斜率公式可得斜率因此直线l的方程为y-2=2x即2x-y+2=0⑵由⑴知,直线l的方程为2x-y+2=0,因此直线l与x轴的交点为(-1,0).又直线l过椭圆C的左焦点,故椭圆C的左焦点为(-1,0).设椭圆C的焦距为2c,则有c=1因为点A(0,2)在椭圆C:上所以b=2根据a2=b2+c2,有a=故椭圆C的标准方程为

47.

48.49.50.解:(1)斜率k

=5/3,设直线l的方程5x-3y+m=0,直线l经过点(0,-8/3),所以m=8,直线l的方程为5x-3y-8=0。(2)设圆心为C(a,b),圆与两坐标轴相切,故a=±b又圆心在直线5x-3y-8=0上,将a=b或a=-b代入直线方程得:a=4或a=1当a=4时,b

=4,此时r=4,圆的方程为(x-4)2

+(y-4)2=16当a=1时,b

=-1,此时r=1,圆的方程为(x-1)2

+(y+1)2=1

51.

52.

53.54.(1)∵PC丄平面ABCD,DC包含于平面ABCD,∴PC丄DC.又AC丄DC,PC∩AC=C,PC包含于平面PAC,AC包含于平面PAC,∴CD丄平面PAC.(2)证明∵AB//CD,CD丄平面PAC,∴AB丄平面PAC,AB包含于平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论