




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.如图是由五个相同的小立方块搭成的几何体,这个几何体的俯视图是()A. B. C. D.2.下列图形:(1)等边三角形,(2)矩形,(3)平行四边形,(4)菱形,是中心对称图形的有()个A.4 B.3 C.2 D.13.如图,中,点,分别是边,上的点,,点是边上的一点,连接交线段于点,且,,,则S四边形BCED()A. B. C. D.4.点、都在反比例函数的图象上,则、的大小关系是()A. B. C. D.不能确定5.使得关于的不等式组有解,且使分式方程有非负整数解的所有的整数的和是()A.-8 B.-10 C.-16 D.-186.矩形不具备的性质是()A.是轴对称图形 B.是中心对称图形 C.对角线相等 D.对角线互相垂直7.下列说法错误的是A.必然事件发生的概率为 B.不可能事件发生的概率为C.有机事件发生的概率大于等于、小于等于 D.概率很小的事件不可能发生8.关于二次函数y=﹣(x+1)2+2的图象,下列判断正确的是()A.图象开口向上B.图象的对称轴是直线x=1C.图象有最低点D.图象的顶点坐标为(﹣1,2)9.如图,⊙O是△ABC的外接圆,∠BAC=60°,若⊙O的半径OC为2,则弦BC的长为()A.1 B. C.2 D.10.如图,△ABC内接于圆,D是BC上一点,将∠B沿AD翻折,B点正好落在圆点E处,若∠C=50°,则∠BAE的度数是()A.40° B.50° C.80° D.90°二、填空题(每小题3分,共24分)11.如图,在⊙O中,AB是⊙O的弦,CD是⊙O的直径,CD⊥AB于点M,若AB=CM=4,则⊙O的半径为_____.12.如图,在中,,点是边的中点,,则的值为___________.13.如图,圆锥的底面直径,母线的中点处有一食物,一只小蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为___________14.在△ABC中,已知(sinA-)2+│tanB-│=1.那么∠C=_________度.15.已知,且,则的值为__________.16.如图,是的直径,弦与弦长度相同,已知,则________.17.由一些大小相同的小正方体搭成的几何体的主视图和俯视图,如图所示,则搭成该几何体的小正方体最多是_____个.18.抛物线y=3(x﹣2)2+5的顶点坐标是_____.三、解答题(共66分)19.(10分)已知四边形ABCD的四个顶点都在⊙O上,对角线AC和BD交于点E.(1)若∠BAD和∠BCD的度数之比为1:2,求∠BCD的度数;(2)若AB=3,AD=5,∠BAD=60°,点C为劣弧BD的中点,求弦AC的长;(3)若⊙O的半径为1,AC+BD=3,且AC⊥BD.求线段OE的取值范围.20.(6分)计算:(1);(2)先化简,再求值.,其中a=2020;21.(6分)如图,AB是⊙O的直径,AM和BN是⊙O的两条切线,E为⊙O上一点,过点E作直线DC分别交AM,BN于点D,C,且CB=CE.(1)求证:DA=DE;(2)若AB=6,CD=4,求图中阴影部分的面积.22.(8分)解方程(1)x2-6x-7=0;(2)(2x-1)2=1.23.(8分)文明交流互鉴是推动人类文明进步和世界和平发展的重要动力.2019年5月“亚洲文明对话大会”在北京成功举办,引起了世界人民的极大关注.某市一研究机构为了了解10~60岁年龄段市民对本次大会的关注程度,随机选取了100名年龄在该范围内的市民进行了调查,并将收集到的数据制成了尚不完整的频数分布表、频数分布直方图和扇形统计图,如下所示:(1)请直接写出_______,_______,第3组人数在扇形统计图中所对应的圆心角是_______度.(2)请补全上面的频数分布直方图.(3)假设该市现有10~60岁的市民300万人,问40~50岁年龄段的关注本次大会的人数约有多少?24.(8分)如图所示,在等腰△ABC中,AB=AC=10cm,BC=16cm.点D由点A出发沿AB方向向点B匀速运动,同时点E由点B出发沿BC方向向点C匀速运动,它们的速度均为1cm/s.连接DE,设运动时间为t(s)(0<t<10),解答下列问题:(1)当t为何值时,△BDE的面积为7.5cm2;(2)在点D,E的运动中,是否存在时间t,使得△BDE与△ABC相似?若存在,请求出对应的时间t;若不存在,请说明理由.25.(10分)受全国生猪产能下降的影响,猪肉价格持续上涨,某超市猪肉8月份平均价格为25元/斤,10月份平均价格为36元/斤,求该超市猪肉价格平均每月增长的百分率.26.(10分)如图,身高1.6米的小明站在距路灯底部O点10米的点A处,他的身高(线段AB)在路灯下的影子为线段AM,已知路灯灯杆OQ垂直于路面.(1)在OQ上画出表示路灯灯泡位置的点P;(2)小明沿AO方向前进到点C,请画出此时表示小明影子的线段CN;(3)若AM=2.5米,求路灯灯泡P到地面的距离.
参考答案一、选择题(每小题3分,共30分)1、A【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【详解】从上面看易得上面一层有3个正方形,下面左边有一个正方形.故选A.【点睛】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.2、B【解析】根据中心对称图形的概念判断即可.【详解】矩形,平行四边形,菱形是中心对称图形,等边三角形不是中心对称图形.故选B.【点睛】本题考查了中心对称图形的概念,判断中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合.3、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形对应成比例可得,得到HC=5,再根据相似三角形的面积比等于相似比的平方可得,S△ABC=40.5,再减去△ADE的面积即可得到四边形BCED的面积.【详解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四边形BCED=S△ABC-S△ADE=40.5-18=22.5故答案选:B.【点睛】本题考查相似三角形的性质和判定.4、A【分析】根据反比例函数的性质,图象在二、四象限,在双曲线的同一支上,y随x的增大而增大,则-3<-1<0,可得.【详解】解:∵k=-1<0,
∴图象在二、四象限,且在双曲线的同一支上,y随x增大而增大
∵-3<-1<0
∴y1<y2,
故选:A.【点睛】本题考查了反比例函数图象上点的坐标特征,熟练掌握反比例函数的性质是解题的关键.5、D【分析】根据不等式组的解集的情况,得出关于m的不等式,求得m的取值范围,再解分式方程得出x,根据x是非负整数,得出m所有值的和.【详解】解:∵关于的不等式组有解,则,∴,又∵分式方程有非负整数解,∴为非负整数,∵,∴-10,-6,-2由,故答案选D.【点睛】本题考查含参数的不等式组及含参数的分式方程,能够准确解出不等式组及方程是解题的关键.6、D【分析】依据矩形的性质进行判断即可.【详解】解:矩形不具备的性质是对角线互相垂直,故选:D.【点睛】本题考查了矩形的性质,熟练掌握性质是解题的关键7、D【分析】利用概率的意义分别回答即可得到答案.概率的意义:必然事件就是一定发生的事件,概率是1;不可能发生的事件就是一定不发生的事件,概率是0;随机事件是可能发生也可能不发生的事件,概率>0且<1;不确定事件就是随机事件.【详解】解:A、必然发生的事件发生的概率为1,正确;
B、不可能发生的事件发生的概率为0,正确;
C、随机事件发生的概率大于0且小于1,正确;
D、概率很小的事件也有可能发生,故错误,
故选D.【点睛】本题考查了概率的意义及随机事件的知识,解题的关键是了解概率的意义.8、D【解析】二次函数的顶点式是:y=a(x﹣h)2+k(a≠0,且a,h,k是常数),它的对称轴是x=h,顶点坐标是(h,k),据此进行判断即可.【详解】∵﹣1<0,∴函数的开口向下,图象有最高点,这个函数的顶点是(﹣1,2),对称轴是x=﹣1,∴选项A、B、C错误,选项D正确,故选D.【点睛】本题考查了二次函数的性质,熟练掌握抛物线的开口方向,对称轴,顶点坐标是解题的关键.9、D【分析】先由圆周角定理求出∠BOC的度数,再过点O作OD⊥BC于点D,由垂径定理可知CD=BC,∠DOC=∠BOC=×120°=60°,再由锐角三角函数的定义即可求出CD的长,进而可得出BC的长.【详解】解:∵∠BAC=60°,∴∠BOC=2∠BAC=2×60°=120°,过点O作OD⊥BC于点D,∵OD过圆心,∴CD=BC,∠DOC=∠BOC=×120°=60°,∴CD=OC×sin60°=2×=,∴BC=2CD=2.故选D.【点睛】本题考查的是圆周角定理、垂径定理及锐角三角函数的定义,根据题意作出辅助线,构造出直角三角形是解答此题的关键.10、C【分析】首先连接BE,由折叠的性质可得:AB=AE,即可得,然后由圆周角定理得出∠ABE和∠AEB的度数,继而求得∠BAE的度数.【详解】连接BE,如图所示:由折叠的性质可得:AB=AE,∴,∴∠ABE=∠AEB=∠C=50°,∴∠BAE=180°﹣50°﹣50°=80°.故选C.【点睛】本题考查了圆周角定理,折叠的性质以及三角形内角和定理.熟练掌握圆周角定理是解题的关键,注意数形结合思想的应用.二、填空题(每小题3分,共24分)11、2.1【分析】连接OA,由垂径定理得出AM=AB=2,设OC=OA=x,则OM=4﹣x,由勾股定理得出AM2+OM2=OA2,得出方程,解方程即可.【详解】解:连接OA,如图所示:∵CD是⊙O的直径,CD⊥AB,∴AM=AB=2,∠OMA=90°,设OC=OA=x,则OM=4﹣x,根据勾股定理得:AM2+OM2=OA2,即22+(4﹣x)2=x2,解得:x=2.1;故答案为:2.1.【点睛】本题考查了垂径定理、勾股定理、解方程;熟练掌握垂径定理,并能进行推理计算是解决问题的关键.12、【分析】作高线DE,利用勾股定理求出AD,AB的值,然后证明,求DE的长,再利用三角函数定义求解即可.【详解】过点D作于E∵点是边的中点,∴,在中,由∴∴由勾股定理得∵∴∵∴∴∴∴∴故答案为:.【点睛】本题考查了三角函数的问题,掌握勾股定理和锐角三角函数的定义是解题的关键.13、15【分析】先将圆锥的侧面展开图画出来,然后根据弧长公式求出的度数,然后利用等边三角形的性质和特殊角的三角函数在即可求出AD的长度.【详解】圆锥的侧面展开图如下图:∵圆锥的底面直径∴底面周长为设则有解得又∴为等边三角形为PB中点∴蚂蚁从点出发沿圆锥表面到处觅食,蚂蚁走过的最短路线长为故答案为:.【点睛】本题主要考查圆锥的侧面展开图,弧长公式和解直角三角形,掌握弧长公式和特殊角的三角函数值是解题的关键.14、2【分析】直接利用非负数的性质和特殊角的三角函数值求出∠A,∠B的度数,进而根据三角形内角和定理得出答案.【详解】∵(sinA)2+|tanB|=1,∴sinA1,tanB1,∴sinA,tanB,∴∠A=45°,∠B=61°,∴∠C=181°-∠A-∠B=181°-45°-61°=2°.故答案为:2.【点睛】本题考查了特殊角的三角函数值,正确记忆相关数据是解答本题的关键.15、1【解析】分析:直接利用已知比例式假设出a,b,c的值,进而利用a+b-2c=6,得出答案.详解:∵,∴设a=6x,b=5x,c=4x,∵a+b-2c=6,∴6x+5x-8x=6,解得:x=2,故a=1.故答案为1.点睛:此题主要考查了比例的性质,正确表示出各数是解题关键.16、【分析】连接BD交OC与E,得出,从而得出;再根据弦与弦长度相同得出,即可得出的度数.【详解】连接BD交OC与E是的直径弦与弦长度相同故答案为.【点睛】本题考查了圆周角定理,辅助线得出是解题的关键.17、1【分析】根据几何体的三视图可进行求解.【详解】解:根据题意得:则搭成该几何体的小正方体最多是1+1+1+2+2=1(个).故答案为1.【点睛】本题主要考查几何体的三视图,熟练掌握几何体的三视图是解题的关键.18、(2,5).【解析】试题分析:由于抛物线y=a(x﹣h)2+k的顶点坐标为(h,k),由此即可求解.解:∵抛物线y=3(x﹣2)2+5,∴顶点坐标为:(2,5).故答案为(2,5).考点:二次函数的性质.三、解答题(共66分)19、(1)120°;(2);(3)≤OE≤【分析】(1)利用圆内接四边形对角互补构建方程解决问题即可.(2)将△ACD绕点C逆时针旋转120°得△CBE,根据旋转的性质得出∠E=∠CAD=30°,BE=AD=5,AC=CE,求出A、B、E三点共线,解直角三角形求出即可;(3)由题知AC⊥BD,过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,判断出四边形OMEN是矩形,进而得出OE2=2﹣(AC2+BD2),设AC=m,构建二次函数,利用二次函数的性质解决问题即可.【详解】解:(1)如图1中,∵四边形ABCD是⊙O的内接四边形,∴∠A+∠C=180°,∵∠A:∠C=1:2,∴设∠A=x,∠C=2x,则x+2x=180°,解得,x=60°,∴∠C=2x=120°.(2)如图2中,∵A、B、C、D四点共圆,∠BAD=60°,∴∠BCD=180°﹣60°=120°,∵点C为弧BD的中点,∴BC=CD,∠CAD=∠CAB=∠BAD=30°,将△ACD绕点C逆时针旋转120°得△CBE,如图2所示:则∠E=∠CAD=∠CAB=30°,BE=AD=5,AC=CE,∴∠ABC+∠EBC=(180°﹣∠CAB﹣∠ACB)+(180°﹣∠E﹣∠BCE)=360°﹣(∠CAB+∠ACB+∠ABC)=360°﹣180°=180°,∴A、B、E三点共线,过C作CM⊥AE于M,∵AC=CE,∴AM=EM=AE=(AB+AD)=×(3+5)=4,在Rt△AMC中,AC=.(3)过点O作OM⊥AC于M,ON⊥BD于N,连接OA,OD,∵OA=OD=1,OM2=OA2﹣AM2,ON2=OD2﹣DN2,AM=AC,DN=BD,AC⊥BD,∴四边形OMEN是矩形,∴ON=ME,OE2=OM2+ME2,∴OE2=OM2+ON2=2﹣(AC2+BD2)设AC=m,则BD=3﹣m,∵⊙O的半径为1,AC+BD=3,∴1≤m≤2,OE2=2﹣[(AC+BD)2﹣2AC×BD]=﹣m2+m﹣=﹣(m﹣)2+,∴≤OE2≤,∴≤OE≤.【点睛】本题主要考查的是圆和四边形的综合应用,掌握圆和四边形的基本性质结合题目条件分析题目隐藏条件是解题的关键.20、(1);(2),1.【分析】(1)把分式方程化为整式方程,即可求解;(2)根据分式的运算法则进行化简,再代入a即可求解.【详解】解:(1)去分母得:解得:检验:当时,∴是原分式方程的解;(2)=当时,原式=1.【点睛】此题主要考查分式方程与分式化简求值,解题的关键是熟知其运算法则.21、(1)证明见解析;(2)【分析】(1)连接OE,BE,根据已知条件证明CD为⊙O的切线,然后再根据切线长定理即可证明DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,根据S阴影部分=S四边形BCEO﹣S扇形OBE,利用分割法即可求得阴影部分的面积.【详解】(1)如图,连接OE、BE,∵OB=OE,∴∠OBE=∠OEB.∵BC=EC,∴∠CBE=∠CEB,∴∠OBC=∠OEC.∵BC为⊙O的切线,∴∠OEC=∠OBC=90°;∵OE为半径,∴CD为⊙O的切线,∵AD切⊙O于点A,∴DA=DE;(2)如图,连接OC,过点D作DF⊥BC于点F,则四边形ABFD是矩形,∴AD=BF,DF=AB=6,∴DC=BC+AD=4,∵CF==2,∴BC﹣AD=2,∴BC=3,在直角△OBC中,tan∠BOC==,∴∠BOC=60°.在△OEC与△OBC中,,∴△OEC≌△OBC(SSS),∴∠BOE=2∠BOC=120°,∴S阴影部分=S四边形BCEO﹣S扇形OBE=2×BC•OB﹣=9﹣3π.【点睛】本题考查了切线的判定与性质、切线长定理,扇形的面积等,正确添加辅助线,熟练运用相关知识是解题的关键.22、(1)x1=7,x2=-1;(2)x1=2,x2=-1【分析】(1)根据配方法法即可求出答案.(2)根据直接开方法即可求出答案;【详解】解:(1)x2-6x+1-1-7=0(x-3)2=16x-3=±4x1=7,x2=-1(2)2x-1=±32x=1±3x1=2,x2=-1【点睛】本题考查了解一元二次方程,观察所给方程的形式,分别使用配方法和直接开方法求解.23、(1)25,20,126;(2)见解析;(2)60万人.【分析】(1)用抽样人数-第1组人数-第3组人数-第4组人数-第5组人数,可得a的值,用第4组的人数÷抽样人数×100%可以求得m的值,用360°×第3组人数在抽样中所占的比例可得第3组在扇形统计图中所对应的圆心角的度数;(2)根据(1)中a的值,可以将频数分布直方图补充完整;(3)用市民人数×第4组(40~50岁年龄段)的人数在抽样中所占的比例可以计算出40~50岁年龄段的关注本次大会的人数约有多少.【详解】(1)a=100﹣5﹣35﹣20﹣15=25,m%=(20÷100)×100%=20%,第3组人数在扇形统计图中所对应的圆心角是:360°126°.故答案为:25,20,126;(2)由(1)知,20≤x<30有25人,补全的频数分布直方图如图所示;(3)30060(万人).答:40~50岁年龄段的关注本次大会的人数约有60万人.【点睛】本题考查了频数分布直方图、频数分布表、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.24、(1)t为3秒时,△BDE的面积为7.3cm3;(3)存在时间t为或秒时,使得△BDE与△ABC相似.【分析】(/
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 桥梁工程设计考题及答案
- 幼儿园数学智慧点滴试题及答案
- 家具设计中如何实现艺术性与功能性的结合试题及答案
- 盐湖提锂技术成本降低与产能快速扩张可行性研究报告
- 绿色环保产业发展资金申请报告:环保产业技术创新与产业化
- 电动汽车安全技术的现状与发展前景探讨试题及答案
- 新安全工程师施工安全考点试题及答案
- 未来科技背景下的大学物理考试试题及答案
- 2025特岗教师招聘教学能力测试题目及答案
- 2025南航招聘空姐面试试题及答案
- 上肢肘腕关节松动术
- 2024年3月昆明市高三语文三诊一模考试卷附答案解析
- (高清版)DZT 0419.3-2022 矿产资源潜力评价规范(1:250 000)第3部分:成矿规律研究
- 科学道德与学术规范知识试题及答案
- 将健康社区纳入社区发展规划
- 痛风科普讲座课件
- 心肌梗死的早期识别与紧急处理
- 地震监测技术在城市交通管理中的应用
- 国开【形考】《管理英语(3)》形成性考核1-8答案
- 2023学年完整公开课版用户思维
- 医院获得性肺炎的诊断与治疗
评论
0/150
提交评论