




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,以AD为直径的半圆O经过Rt△ABC斜边AB的两个端点,交直角边AC于点E,B、E是半圆弧的三等分点,弧BE的长为π,则图中阴影部分的面积为()A. B. C. D.2.将以点为位似中心放大为原来的2倍,得到,则等于()A. B. C. D.3.一元二次方程x2﹣x﹣2=0的解是()A.x1=﹣1,x2=﹣2B.x1=1,x2=﹣2C.x1=1,x2=2D.x1=﹣1,x2=24.抛物线的顶点坐标是()A.(2, 1) B.(2, -1) C.(-2, 1) D.(-2, -1)5.如图,在⊙O中,点A、B、C在圆上,∠AOB=100°,则∠C=()A.45° B.50° C.55° D.60°6.二次函数图像的顶点坐标是()A. B. C. D.7.已知锐角α,且sinα=cos38°,则α=()A.38° B.62° C.52° D.72°8.如图,Rt△ABC中,∠C=90°,AC=3,BC=1.分别以AB、AC、BC为边在AB的同侧作正方形ABEF、ACPQ、BCMN,四块阴影部分的面积分别为S1、S2、S3、S1.则S1﹣S2+S3+S1等于()A.1 B.6 C.8 D.129.按如图所示的方法折纸,下面结论正确的个数()①∠2=90°;②∠1=∠AEC;③△ABE∽△ECF;④∠BAE=∠1.A.1个 B.2个 C.1个 D.4个10.已知的直径是8,直线与有两个交点,则圆心到直线的距离满足()A. B. C. D.11.如图,、分别切⊙于、,,⊙半径为,则的长为()A. B. C. D.12.关于x的一元二次方程有两个实数根,,则k的值()A.0或2 B.-2或2 C.-2 D.2二、填空题(每题4分,共24分)13.某种传染病,若有一人感染,经过两轮传染后将共有49人感染.设这种传染病每轮传染中平均一个人传染了x个人,列出方程为______.14.如图在圆心角为的扇形中,半径,以为直径作半圆.过点作的平行线交两弧分别于点,则图中阴影部分的面积是_______.15.在1:5000的地图上,某两地间的距离是,那么这两地的实际距离为______________千米.16.如图,一个长为4,宽为3的长方形木板斜靠在水平桌面上的一个小方块上,其长边与水平桌面成30°夹角,将长方形木板按逆时针方向做两次无滑动的翻滚,使其长边恰好落在水平桌面l上,则木板上点A滚动所经过的路径长为_____.17.如图,⊙O与直线相离,圆心到直线的距离,,将直线绕点逆时针旋转后得到的直线刚好与⊙O相切于点,则⊙O的半径=.18.如图,一渔船由西往东航行,在A点测得海岛C位于北偏东60°的方向,前进20海里到达B点,此时,测得海岛C位于北偏东30°的方向,则海岛C到航线AB的距离CD等于海里.三、解答题(共78分)19.(8分)用适当的方法解下列方程.(1)3x(x+3)=2(x+3)(2)2x2﹣4x﹣3=1.20.(8分)如图,已知等边△ABC,AB=1.以AB为直径的半圆与BC边交于点D,过点D作DF⊥AC,垂足为F,过点F作FG⊥AB,垂足为G,连结GD.(1)求证:DF是⊙O的切线;(2)求FG的长;(3)求△FDG的面积.21.(8分)如图,已知中,,.求的面积.22.(10分)如图,河流两岸PQ,MN互相平行,C、D是河岸PQ上间隔50m的两个电线杆,某人在河岸MN上的A处测得∠DAB=30°,然后沿河岸走了100m到达B处,测得∠CBF=70°,求河流的宽度(结果精确到个位,=1.73,sin70°=0.94,cos70°=0.34,tan70°=2.75)23.(10分)已知是一张直角三角形纸片,其中,,小亮将它绕点逆时针旋转后得到,交直线于点.(1)如图1,当时,所在直线与线段有怎样的位置关系?请说明理由.(2)如图2,当,求为等腰三角形时的度数.24.(10分)如图所示,要在底边BC=160cm,高AD=120cm的△ABC铁皮余料上,截取一个矩形EFGH,使点H在AB上,点G在AC上,点E,F在BC上,AD交HG于点M.(1)设矩形EFGH的长HG=ycm,宽HE=xcm.求y与x的函数关系式;(2)当x为何值时,矩形EFGH的面积S最大?最大值是多少?25.(12分)我市某工艺厂为配合北京奥运,设计了一款成本为20元∕件的工艺品投放市场进行试销.经过调查,得到如下数据:销售单价x(元/件)…30405060…每天销售量y(件)…500400300200…(1)把上表中x、y的各组对应值作为点的坐标,在下面的平面直角坐标系中描出相应的点,猜想y与x的函数关系,并求出函数关系式;(2)当销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?最大利润是多少?(利润=销售总价﹣成本总价)(3)当地物价部门规定,该工艺品销售单价最高不能超过45元/件,那么销售单价定为多少时,工艺厂试销该工艺品每天获得的利润最大?26.已知抛物线与轴交于两点,与轴交于点.(1)求此抛物线的表达式及顶点的坐标;(2)若点是轴上方抛物线上的一个动点(与点不重合),过点作轴于点,交直线于点,连结.设点的横坐标为.①试用含的代数式表示的长;②直线能否把分成面积之比为1:2的两部分?若能,请求出点的坐标;若不能,请说明理由.(3)如图2,若点也在此抛物线上,问在轴上是否存在点,使?若存在,请直接写出点的坐标;若不存在,请说明理由.
参考答案一、选择题(每题4分,共48分)1、D【分析】首先根据圆周角定理得出扇形半径以及圆周角度数,进而利用锐角三角函数关系得出BC,AC的长,利用S△ABC﹣S扇形BOE=图中阴影部分的面积求出即可【详解】解:连接BD,BE,BO,EO,∵B,E是半圆弧的三等分点,∴∠EOA=∠EOB=∠BOD=60°,∴∠BAC=∠EBA=30°,∴BE∥AD,∵弧BE的长为π,∴=π,解得:R=2,∴AB=ADcos30°=2,∴BC=AB=,∴AC==3,∴S△ABC=×BC×AC=××3=,∵△BOE和△ABE同底等高,∴△BOE和△ABE面积相等,∴图中阴影部分的面积为:S△ABC﹣S扇形BOE=﹣=﹣.故选D.【点睛】此题主要考查了扇形的面积计算以及三角形面积求法等知识,根据已知得出△BOE和△ABE面积相等是解题关键.2、C【分析】根据位似图形都是相似图形,再直接利用相似图形的性质:面积比等于相似比的平方计算可得.【详解】)∵将△OAB放大到原来的2倍后得到△OA′B′,
∴S△OAB:S△OA′B′=1:4.故选:C.【点睛】本题考查位似图形的性质,解题关键是首先掌握位似图形都是相似图形.3、D【解析】试题分析:利用因式分解法解方程即可.解:(x﹣2)(x+1)=0,x﹣2=0或x+1=0,所以x1=2,x2=﹣1.故选D.考点:解一元二次方程-因式分解法.4、C【分析】已知抛物线的顶点式可直接写出顶点坐标.【详解】解:由抛物线的顶点坐标可知,抛物线y=(x+2)2+1的顶点坐标是(-2,1).
故选C.【点睛】本题考查的是抛物线的顶点坐标,即抛物线y=(x+a)2+h中,其顶点坐标为(-a,h).5、B【分析】利用同弧所对的圆周角是圆心角的一半,求得圆周角的度数即可;【详解】解:∵,∴∠C=∠AOB,∵∠AOB=100°,∴∠C=50°;故选:B.【点睛】本题主要考查了圆周角定理,掌握圆周角定理是解题的关键.6、D【分析】先把二次函数进行配方得到抛物线的顶点式,根据二次函数的性质即可得到其顶点坐标.【详解】∵,∴二次函数的顶点坐标为.
故选:D.【点睛】本题考查二次函数的顶点坐标,配方是解决问题的关键,属基础题.7、C【分析】根据一个角的正弦值等于它的余角的余弦值求解即可.【详解】∵sinα=cos38°,
∴α=90°-38°=52°.
故选C.【点睛】本题考查了锐角三角函数的性质,掌握正余弦的转换方法:一个角的正弦值等于它的余角的余弦值.8、B【解析】本题先根据正方形的性质和等量代换得到判定全等三角形的条件,再根据全等三角形的判定定理和面积相等的性质得到S、S、、与△ABC的关系,即可表示出图中阴影部分的面积和.本题的着重点是等量代换和相互转化的思想.【详解】解:如图所示,过点F作FG⊥AM交于点G,连接PF.根据正方形的性质可得:AB=BE,BC=BD,∠ABC+∠CBE=∠CBE+∠EBD=90,即∠ABC=∠EBD.在△ABC和△EBD中,AB=EB,∠ABC=∠EBD,BC=BD所以△ABC≌△EBD(SAS),故S=,同理可证,△KME≌△TPF,△FGK≌△ACT,因为∠QAG=∠AGF=∠AQF=90,所以四边形AQFG是矩形,则QF//AG,又因为QP//AC,所以点Q、P,F三点共线,故S+S=,S=.因为∠QAF+∠CAT=90,∠CAT+∠CBA=90,所以∠QAF=∠CBA,在△AQF和△ACB中,因为∠AQF=∠ACB,AQ=AC,∠QAF=∠CAB所以△AQF≌△ACB(ASA),同理可证△AQF≌△BCA,故S1﹣S2+S3+S1==31=6,故本题正确答案为B.【点睛】本题主要考查正方形和全等三角形的判定与性质.9、C【解析】∵∠1+∠1=∠2,∠1+∠1+∠2=180°,∴∠1+∠1=∠2=90°,故①正确;∵∠1+∠1=∠2,∴∠1≠∠AEC.故②不正确;∵∠1+∠1=90°,∠1+∠BAE=90°,∴∠1=∠BAE,又∵∠B=∠C,∴△ABE∽△ECF.故③,④正确;故选C.10、B【分析】先求出圆的半径,再根据直线与圆的位置关系与d和r的大小关系即可得出结论.【详解】解:∵的直径是8∴的半径是4∵直线与有两个交点∴0≤d<4(注:当直线过圆心O时,d=0)故选B.【点睛】此题考查的是根据圆与直线的位置关系求圆心到直线的距离的取值范围,掌握直线与圆的位置关系与d和r的大小关系是解决此题的关键.11、C【分析】连接PO、AO、BO,由角平分线的判定定理得,PO平分∠APB,则∠APO=30°,得到PO=4,由勾股定理,即可求出PA.【详解】解:连接PO、AO、BO,如图:∵、分别切⊙于、,∴,,AO=BO,∴PO平分∠APB,∴∠APO==30°,∵AO=2,∠PAO=90°,∴PO=2AO=4,由勾股定理,则;故选:C.【点睛】本题考查了圆的切线的性质,角平分线的判定定理,以及勾股定理,解题的关键是掌握角平分线的判定定理,得到∠APO=30°.12、D【分析】将化简可得,,利用韦达定理,,解得,k=±2,由题意可知△>0,可得k=2符合题意.【详解】解:由韦达定理,得:=k-1,,由,得:,即,所以,,化简,得:,解得:k=±2,因为关于x的一元二次方程有两个实数根,所以,△==〉0,k=-2不符合,所以,k=2故选D.【点睛】本题考查了一元二次方程根与系数的关系,熟练掌握并灵活运用是解题的关键.二、填空题(每题4分,共24分)13、x(x+1)+x+1=1.【分析】设每轮传染中平均一人传染x人,那么经过第一轮传染后有x人被感染,那么经过两轮传染后有x(x+1)+x+1人感染,列出方程即可.【详解】解:设每轮传染中平均一人传染x人,则第一轮后有x+1人感染,第二轮后有x(x+1)+x+1人感染,由题意得:x(x+1)+x+1=1.故答案为:x(x+1)+x+1=1.【点睛】本题主要考查了由实际问题抽象出一元二次方程,掌握一元二次方程是解题的关键.14、【分析】如图,连接CE,可得AC=CE,由AC是半圆的直径,可得OA=OC=CE,根据平行线的性质可得∠COE=90°,根据含30°角的直角三角形的性质可得∠CEO=30°,即可得出∠ACE=60°,利用勾股定理求出OE的长,根据S阴影=S扇形ACE-S△CEO-S扇形AOD即可得答案.【详解】如图,连接CE,∵AC=6,AC、CE为扇形ACB的半径,∴CE=AC=6,∵OE//BC,∠ACB=90°,∴∠COE=180°-90°=90°,∴∠AOD=90°,∵AC是半圆的直径,∴OA=OC=CE=3,∴∠CEO=30°,OE==,∴∠ACE=60°,∴S阴影=S扇形ACE-S△CEO-S扇形AOD=--=,故答案为:【点睛】本题考查扇形面积、含30°角的直角三角形的性质及勾股定理,熟练掌握扇形面积公式并正确作出辅助线是解题关键.15、1【分析】根据比例尺的意义,可得答案.【详解】解:,故答案为:1.【点睛】本题考查了比例尺,利用比例尺的意义是解题关键,注意把厘米化成千米.16、π【分析】木板转动两次的轨迹如图(见解析):第一次转动是以点M为圆心,AM为半径,圆心角为60度;第二次转动是以点N为圆心,为半径,圆心角为90度,根据弧长公式即可求得.【详解】由题意,木板转动两次的轨迹如图:(1)第一次转动是以点M为圆心,AM为半径,圆心角为60度,即所以弧的长(2)第二次转动是以点N为圆心,为半径,圆心角为90度,即所以弧的长(其中半径)所以总长为故答案为.【点睛】本题考查了图形的翻转、弧长公式(弧长,其中是圆心角弧度数,为半径),理解图形翻转的轨迹是解题关键.17、1.【解析】试题分析:∵OB⊥AB,OB=,OA=4,∴在直角△ABO中,sin∠OAB=,则∠OAB=60°;又∵∠CAB=30°,∴∠OAC=∠OAB-∠CAB=30°,∵直线刚好与⊙O相切于点C,∴∠ACO=90°,∴在直角△AOC中,OC=OA=1.故答案是1.考点:①解直角三角形;②切线的性质;③含30°角直角三角形的性质.18、10【详解】试题分析:BD设为x,因为C位于北偏东30°,所以∠BCD=30°在RT△BCD中,BD=x,CD=3x又∵∠CAD=30°,在RT△ADC中,AB=20,AD=20+x,又∵△ADC∽△CDB,所以ADCD即:(3x)2=x(20+x),求出x=10,故考点:1、等腰三角形;2、三角函数三、解答题(共78分)19、(1)x1=−3,x2=(2)【分析】(1)利用因式分解法解方程即可;(2)利用公式法解方程即可.【详解】(1)3x(x+3)=2(x+3)3x(x+3)-2(x+3)=1(x+3)(3x-2)=13x-2=1或x+3=1∴x1=,x2=-3;(2)2x2-4x-3=1a=2,b=-4,c=-3,△=16+24=41>1,,∴x1=1+,x2=1-.【点睛】本题考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.20、(1)详见解析;(2);(3)【分析】(1)如图所示,连接OD.由题意可知∠A=∠B=∠C=60°,则OD=OB,可以证明△OBD为等边三角形,易得∠C=∠ODB=60°,再运用平行线的性质和判定以及等量代换即可完成解答.(2)先说明OD为△ABC的中位线,得到BD=CD=6.在Rt△CDF中,由∠C=60°,得∠CDF=30°,根据含30度的直角三角形三边的关系得CF=CD,则AF=AC-CF=2,最后在Rt△AFG中,根据正弦的定义即可解答;(3)作DH⊥FG,CD=6,CF=3,DF=3,FH=,DH=,最后根据三角形的面积公式解答即可.【详解】解:(1)如图所示,连接OD.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°∵OD=OB∴△OBD为等边三角形,∴∠C=∠ODB=60°,∴AC∥OD,∴∠CFD=∠FDO,∵DF⊥AC,∴∠CFD=∠FDO=20°,∴DF是⊙O的切线(2)因为点O是AB的中点,则OD是△ABC的中位线.∵△ABC是等边三角形,AB=1,∴AB=AC=BC=1,CD=BD=BC=6∵∠C=60°,∠CFD=20°,∴∠CDF=30°,同理可得∠AFG=30°,∴CF=CD=3∴AF=1-3=2.∴.(3)作DH⊥FG,CD=6,CF=3,DF=3∴FH=,DH=∴△FDG的面积为DHFG=【点睛】本题考查了切线的性质、等边三角形的性质以及解直角三角形等知识,连接圆心与切点的半径是解决问题的常用方法.21、【分析】过点A作AD⊥BC,垂足为点D,构造直角三角形,利用三角函数值分别求出AD、BD、CD的值即可求三角形面积.【详解】解:过点A作AD⊥BC,垂足为点D,在Rt△ADB中,∵,∴=∵,∴在Rt△ADC中,∵,∴,∴AD=DC=4∴【点睛】本题考查的知识点是利用勾股定理求三角形面积,通过作辅助线构造直角三角形结合三角函数值是解此题的关键.22、河流的宽度CF的值约为37m.【分析】过点C作CE∥AD,交AB于点E,则四边形AECD是平行四边形,利用平行四边形的性质可得出AE、EB及∠CEF的值,通过解直角三角形可得出EF,BF的长,结合EF﹣BF=50m,即可求出CF的长.【详解】如图,过点C作CE∥AD,交AB于点E,∵CD∥AE,CE∥AD,∴四边形AECD是平行四边形,∵CD=50m,AB=100m,∴AE=CD=50m,EB=AB﹣AE=50m,∠CEF=∠DAB=30°.在Rt△ECF中,EF==CF,∵∠CBF=70°,∴在Rt△BCF中,BF=,∵EF﹣BF=50m,∴CF﹣=50,∴CF≈37m.答:河流的宽度CF的值约为37m.【点睛】本题主要考查了解直角三角形的应用,不规则图形可以通过作平行线转化为平行四边形与直角三角形的问题进行解决,熟练掌握三角函数的定义是解题关键.23、(1)BD与FM互相垂直,理由见解析;(2)β的度数为30°或75°或120°.【分析】(1)由题意设直线BD与FM相交于点N,即可根据旋转的性质判断直线BD与线段MF垂直;(2)根据旋转的性质得∠MAD=β,分类讨论:当KA=KD时,根据等腰三角形的性质得∠KAD=∠D=30°,即β=30°;当DK=DA时,根据等腰三角形的性质得∠DKA=∠DAK,然后根据三角形内角和可计算出∠DAK=75°,即β=75°;当AK=AD时,根据等腰三角形的性质得∠AKD=∠D=30°,然后根据三角形内角和可计算出∠KAD=120°,即β=120°.【详解】解:(1)BD与FM互相垂直,理由如下设此时直线BD与FM相交于点N∵∠DAB=90°,∠D=30°∴∠ABD=90°-∠D=60°,∴∠NBM=∠ABD=60°由旋转的性质得△ADB≌△AMF,∴∠D=∠M=30°∴∠MNB=180°-∠M-∠NBM=180°-30°-60°=90°∴BD与FM互相垂直(2)当KA=KD时,则∠KAD=∠D=30°,即β=30°;当DK=DA时,则∠DKA=∠DAK,∵∠D=30°,∴∠DAK=(180°﹣30°)÷2=75°,即β=75°;当AK=AD时,则∠AKD=∠D=30°,∴∠KAD=180°﹣30°﹣30°=120°,即β=120°,综上所述,β的度数为30°或75°或120°.【点睛】本题考查作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.应用分类讨论思想和等腰三角形的性质是解决问题的关键.24、(1);(2)当x=60时,S最大,最大为4800cm².【解析】(1)根据矩形的性质可得△AHG∽△ABC,根据相似三角形的性质即可得答案;(2)利用S=xy,把代入得S关于x的二次函数解析式,根据二次函数的性质求出最大值即可.【详解】解:(1)∵四辺形EFGH是矩形,∴HG∥BC∴ΔAHG∽ΔABC∴,即∴(2)把带入S=xy,得=当x=60时,S最大,最大为4800cm².【点睛】此题考查了相似三角形的判定与性质以及二次函数的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.25、(1)图见解析,y=-10x+1;(2)单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元;(3)单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.【分析】(1)从表格中的数据我们可以看出当x增加10时,对应y的值减小100,所以y与x之间可能是一次函数的关系,我们可以根据图象发现这些点在一条直线上,所以y与x之间是一次函数的关系,然后设出一次函数关系式,求出其关系式;(2)利用二次函数的知识求最大值;(3)根据函数的增减性,即可求得销售单价最高不能超过45元/件时的最大值.【详解】解:(1)画图如图;由图可猜想y与x是一次函数关系,设这个一次函数为y=kx+b(k≠0)∵这个一次函数的图象经过(30,500)、(40,400)这两点,∴,解得∴函数关系式是:y=-10x+1.(2)设工艺厂试销该工艺品每天获得的利润是W元,依题意得W=(x-20)(-10x+1)=-10x2+1000x-16000=-10(x-50)2+9000∴当x=50时,W有最大值9000.所以,当销售单价定为50元∕件时,工艺厂试销该工艺品每天获得的利润最大,最大利润是9000元.(3)对于函数W=-10(x-50)2+9000,当x≤45时,W的值随着x值的增大而增大,销售单价定为45元∕件时,工艺厂试销该工艺品每天获得的利润最大.26、(1),顶点坐标为:;(2)①;②能,理由见解析,点的坐标为;(3)存在,点Q的坐标为:或.【分析】(1)根据待定系数法即可求出抛物线的解析式,然后把一般式转化为顶点式即可得出抛物线的顶点坐标;(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 逻辑协议书模板
- 合伙开公司协议书
- 人事代理与招聘服务协议
- 烽火通信协议书
- 进出口涉外合同协议
- 专业艺术品采购与存储服务协议
- 湾区投资协议书
- 透明膜质保合同协议
- 送水工劳务合同协议
- 车辆转入协议书范本
- TCAWAORG 032-2024 家庭医生远程与互联网健康服务规范
- 电磁悬浮手术床技术-深度研究
- 大型活动安保人员配置措施
- 大华单元门口机使用说明书
- 2025年春季新北师大版生物七年级下册全册教学课件
- 水井清理淤泥施工方案
- 【MOOC】创新思维与创业实验-东南大学 中国大学慕课MOOC答案
- 地方融资平台债务和政府中长期支出事项监测平台操作手册-单位
- 2020年同等学力申硕《计算机科学与技术学科综合水平考试》历年真题及答案
- 20世纪西方音乐知到智慧树期末考试答案题库2024年秋北京大学
- 2025年湖北省武汉市高考数学模拟试卷附答案解析
评论
0/150
提交评论