2023届河北省沧州市孟村回族自治县数学九年级上册期末达标检测试题含解析_第1页
2023届河北省沧州市孟村回族自治县数学九年级上册期末达标检测试题含解析_第2页
2023届河北省沧州市孟村回族自治县数学九年级上册期末达标检测试题含解析_第3页
2023届河北省沧州市孟村回族自治县数学九年级上册期末达标检测试题含解析_第4页
2023届河北省沧州市孟村回族自治县数学九年级上册期末达标检测试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2022-2023学年九上数学期末模拟试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.点A(﹣5,4)所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.如图相交于点,下列比例式错误的是()A. B. C. D.3.一个不透明的袋子中装有21个红球和若干个白球,这些球除了颜色外都相同,若小英每次从袋子中随机摸出一个球,记下颜色后再放回,经过多次重复试验,小英发现摸到红球的频率逐渐稳定于1.4,则小英估计袋子中白球的个数约为()A.51 B.31 C.12 D.84.主视图、左视图、俯视图分别为下列三个图形的物体是()A. B. C. D.5.已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a的值是()A.1 B.﹣1 C. D.6.如图,双曲线的一个分支为()A.① B.② C.③ D.④7.下列关于x的一元二次方程,有两个不相等的实数根的方程的是()A.x2+1=0 B.x2+2x+1=0 C.x2+2x+3=0 D.x2+2x-3=08.若气象部门预报明天下雨的概率是,下列说法正确的是()A.明天一定会下雨 B.明天一定不会下雨C.明天下雨的可能性较大 D.明天下雨的可能性较小9.如果,那么=()A. B. C. D.10.若二次函数y=x2+4x+n的图象与x轴只有一个公共点,则实数n的值是()A.1 B.3 C.4 D.6二、填空题(每小题3分,共24分)11.在中,,,则______________.12.抛物线关于x轴对称的抛物线解析式为_______________.13.如果二次函数的图象如图所示,那么____0.(填“>”,“=”,或“<”).14.已知抛物线y=ax2+bx+c开口向上,一条平行于x轴的直线截此抛物线于M、N两点,那么线段MN的长度随直线向上平移而变_____.(填“大”或“小”)15.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是_____.16.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.17.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是.18.小王存银行5000元,定期一年后取出3000元,剩下的钱继续定期一年存入,如果每年的年利率不变,到期后取出2750元,则年利率为__________.三、解答题(共66分)19.(10分)若关于x的一元二次方程(m+1)x2﹣2x﹣1=0有两个不相等的实数根,(1)求m的取值范围;(2)若x=1是方程的一个根,求m的值和另一个根.20.(6分)如图,矩形中,点为边上一点,过点作的垂线交于点.(1)求证:;(2)若,求的长.21.(6分)(7分)某中学1000名学生参加了”环保知识竞赛“,为了了解本次竞赛成绩情况,从中抽取了部分学生的成绩(得分取整数,满分为100分)作为样本进行统计,并制作了如图频数分布表和频数分布直方图(不完整且局部污损,其中“■”表示被污损的数据).请解答下列问题:成绩分组频数频率50≤x<6080.1660≤x<7012a70≤x<80■0.580≤x<9030.0690≤x≤100bc合计■1(1)写出a,b,c的值;(2)请估计这1000名学生中有多少人的竞赛成绩不低于70分;(3)在选取的样本中,从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学参加环保知识宣传活动,求所抽取的2名同学来自同一组的概率.22.(8分)如图,在平面直角坐标系中,矩形的顶点在轴上,在轴上,把矩形沿对角线所在的直线对折,点恰好落在反比例函数的图象上点处,与轴交于点,延长交轴于点,点刚好是的中点.已知的坐标为.(1)求反比例函数的函数表达式;(2)若是反比例函数图象上的一点,点在轴上,若以为顶点的四边形是平行四边形,请直接写出点的坐标_________.23.(8分)如图,在平面直角坐标系xoy中,直线与轴,轴分别交于点A和点B.抛物线经过A,B两点,且对称轴为直线,抛物线与轴的另一交点为点C.(1)求抛物线的函数表达式;(2)设点E是抛物线上一动点,且点E在直线AB下方.当△ABE的面积最大时,求点E的坐标,及△ABE面积的最大值S;抛物线上是否还存在其它点M,使△ABM的面积等于中的最大值S,若存在,求出满足条件的点M的坐标;若不存在,说明理由;(3)若点F为线段OB上一动点,直接写出的最小值.24.(8分)如图,是的直径,切于点,交于点,平分,连接.(1)求证:;(2)若,,求的半径.25.(10分)如图,BD是⊙O的直径.弦AC垂直平分OD,垂足为E.(1)求∠DAC的度数;(2)若AC=6,求BE的长.26.(10分)如图,点分别在的边上,已知.(1)求证:.(2)若,求的长.

参考答案一、选择题(每小题3分,共30分)1、B【分析】根据象限内点的坐标特点即可解答.【详解】点A(﹣5,4)所在的象限是第二象限,故选:B.【点睛】此题考查象限内点的坐标,熟记每个象限及坐标轴上点的坐标特点是解题的关键.2、D【分析】根据相似三角形的性质和平行线分线段成比例定理,对每个选项进行判断,即可得到答案.【详解】解:∵,∴,,故A、B正确;∴△CDG∽△FEG,∴,故C正确;不能得到,故D错误;故选:D.【点睛】本题考查了相似三角形的判定和性质,平行线分线段成比例定理,解题的关键是熟练掌握平行线分线段成比例定理.3、B【分析】设白球个数为个,白球数量袋中球的总数=1-14=1.6,求得【详解】解:设白球个数为个,根据题意得,白球数量袋中球的总数=1-14=1.6,所以,解得故选B【点睛】本题主要考查了用评率估计概率.4、A【解析】分析:本题时给出三视图,利用空间想象力得出立体图形,可以先从主视图进行排除.解析:通过给出的主视图,只有A选项符合条件.故选A.5、B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1.故选B.【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.6、D【解析】∵在中,k=8>0,∴它的两个分支分别位于第一、三象限,排除①②;又当=2时,=4,排除③;所以应该是④.故选D.7、D【分析】要判断所给方程是有两个不相等的实数根,只要找出方程的判别式,根据判别式的正负情况即可作出判断.有两个不相等的实数根的方程,即判别式的值大于0的一元二次方程.【详解】A、△=0-4×1×1=-4<0,没有实数根;B、△=22-4×1×1=0,有两个相等的实数根;C、△=22-4×1×3=-8<0,没有实数根;D、△=22-4×1×(-3)=16>0,有两个不相等的实数根,故选D.【点睛】本题考查了根的判别式,注意掌握一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:①当△>0时,方程有两个不相等的两个实数根;②当△=0时,方程有两个相等的两个实数根;③当△<0时,方程无实数根.8、C【分析】根据概率的意义找到正确选项即可.【详解】解:气象部门预报明天下雨的概率是,说明明天下雨的可能性比较大,所以只有C合题意.故选:C.【点睛】此题主要考查了概率的意义,关键是理解概率表示随机事件发生的可能性大小:可能发生,也可能不发生.9、D【分析】直接利用已知进行变形进而得出结果.【详解】解:∵,∴3x+3y=5x,则3y=2x,那么=.故选:D.【点睛】本题考查了比例的性质,正确将已知变形是解题的关键.10、C【分析】二次函数y=x2+4x+n的图象与轴只有一个公共点,则,据此即可求得.【详解】∵,,,根据题意得:,解得:n=4,故选:C.【点睛】本题考查了抛物线与轴的交点,二次函数(a,b,c是常数,a≠0)的交点与一元二次方程根之间的关系.决定抛物线与轴的交点个数.>0时,抛物线与x轴有2个交点;时,抛物线与轴有1个交点;<0时,抛物线与轴没有交点.二、填空题(每小题3分,共24分)11、【分析】根据sinA=,可得出的度数,并得出的度数,继而可得的值.【详解】在Rt△ABC中,,∵,∴∴∴=.故答案为:.【点睛】本题考查了特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键.12、【分析】由关于x轴对称点的特点是:横坐标不变,纵坐标变为相反数,可求出抛物线的顶点关于x轴对称的顶点,关于x轴对称,则开口方向与原来相反,得出二次项系数,最后写出对称后的抛物线解析式即可.【详解】解:抛物线的顶点为(3,-1),点(3,-1)关于x轴对称的点为(3,1),又∵关于x轴对称,则开口方向与原来相反,所以,∴抛物线关于x轴对称的抛物线解析式为.故答案为:.【点睛】本题考查了二次函数的图象与几何变换,解题的关键是抓住关于x轴对称点的特点.13、<【分析】首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与Y轴的交点的纵坐标即可判断c的正负,代入即可判断abc的正负.【详解】解:∵图象开口方向向上,∴a>0.∵图象的对称轴在x轴的负半轴上,∴.

∵a>0,∴b>0.∵图象与Y轴交点在y轴的负半轴上,

∴c<0.∴abc<0.故答案为<.【点睛】本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合思想.14、大【解析】因为二次函数的开口向上,所以点M,N向上平移时,距离对称轴的距离越大,即MN的长度随直线向上平移而变大,故答案为:大.15、(3,﹣2)【解析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小.16、【分析】首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小.然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MN.∵BC=6为定值,∴四边形的周长取决于MN的大小.如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,∵M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,∴最大值为12+2×=12+.故答案为:12+.【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.17、24或.【解析】试题分析:由x2-16x+60=0,可解得x的值为6或10,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案.考点:一元二次方程的解法;等腰三角形的性质;直角三角形的性质.勾股定理.18、【分析】设定期一年的利率是,则存入一年后的本息和是元,取3000元后余元,再存一年则有方程,解这个方程即可求解.【详解】解:设定期一年的利率是,根据题意得:一年时:,取出3000后剩:,同理两年后是,即方程为,解得:,(不符合题意,故舍去),即年利率是.故答案为:10%.【点睛】此题考查了列代数式及一元二次方程的应用,是有关利率的问题,关键是掌握公式:本息和本金利率期数),难度一般.三、解答题(共66分)19、(1)m>﹣2且m≠﹣1;(2)方程的另一个根为x=﹣.【分析】(1)根据判别式的意义得到△=(-2)2+4(m+1)>0,然后解不等式即可;(2)先根据方程的解的定义把x=1代入原方程求出m的值,则可确定原方程变为3x2-2x-1=0,然后解方程得到方程的另一根.【详解】(1)根据题意得△=(﹣2)2+4(m+1)>0,解得m>﹣2,且m+1≠0,解得:m≠﹣1,所以m>﹣2且m≠﹣1;(2)把x=1代入原方程得m+1﹣2-1=0,解得m=2,∴原方程变为3x2﹣2x﹣1=0解方程得x1=1,x2=﹣,∴方程的另一个根为x=﹣.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了解一元二次方程.20、(1)证明见解析;(2)【分析】(1)根据同角的余角相等推出,结合即可判定相似;(2)根据条件可得CD=2,再利用相似三角形对应边成比例,建立方程即可求出DE.【详解】解:(1),又(2),【点睛】本题考查了相似三角形的判定与性质,熟练掌握“一线三垂直”模型的证明方法是解题的关键.21、(1)a=0.24,b=2,c=0.04;(2)600人;(3)人.【分析】(1)利用50≤x<60的频数和频率,根据公式:频率=频数÷总数先计算出样本总人数,再分别计算出a,b,c的值;(2)先计算出竞赛分数不低于70分的频率,根据样本估计总体的思想,计算出1000名学生中竞赛成绩不低于70分的人数;(3)列树形图或列出表格,得到要求的所有情况和2名同学来自一组的情况,利用求概率公式计算出概率.【详解】解:(1)样本人数为:8÷0.16=50(名)a=12÷50=0.24,70≤x<80的人数为:50×0.5=25(名)b=50﹣8﹣12﹣25﹣3=2(名)c=2÷50=0.04所以a=0.24,b=2,c=0.04;(2)在选取的样本中,竞赛分数不低于70分的频率是0.5+0.06+0.04=0.6,根据样本估计总体的思想,有:1000×0.6=600(人)∴这1000名学生中有600人的竞赛成绩不低于70分;(3)成绩是80分以上的同学共有5人,其中第4组有3人,不妨记为甲,乙,丙,第5组有2人,不妨记作A,B从竞赛成绩是80分以上(含80分)的同学中随机抽取两名同学,情形如树形图所示,共有20种情况:抽取两名同学在同一组的有:甲乙,甲丙,乙甲,乙丙,丙甲,丙乙,AB,BA共8种情况,∴抽取的2名同学来自同一组的概率P==【点睛】本题考查了频数、频率、总数间关系及用列表法或树形图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树形图法适合两步或两步以上完成的事件;概率=所求情况数与总情况数之比.22、(1);(2),,(,0).【分析】(1)证得BD是CF的垂直平分线,求得,作DG⊥BF于G,求得点D的坐标为,从而求得反比例函数的解析式;(2)分3种情形,分别画出图形即可解决问题.【详解】(1)∵四边形ABOC是矩形,∴AB=OC,AC=OB,,根据对折的性质知,,∴,,AB=DB,又∵D是CF的中点,∴BD是CF的垂直平分线,∴BC=BF,,∴,∵,∴,∵点B的坐标为,∴,在中,,,,∴,过D作DG⊥BF于G,如图,在中,,,,∴,,∴,∴点D的坐标为,代入反比例函数的解析式得:,∴反比例函数的解析式;(2)如图①、②中,作EQ∥x轴交反比例函数的图象于点Q,在中,,,∴,∴点E的坐标为,点Q纵坐标与点E纵坐标都是,代入反比例函数的解析式得:,解得:,∴点Q的坐标为,∴,∵四点构成平行四边形,∴∴点的坐标分别为,;如图③中,构成平行四边形,作QM∥y轴交轴于点M,∵四边形为平行四边形,∴,,∴,∴,,∴点的坐标为,∴∴,∴点的坐标为,综上,符合条件点的坐标有:,,;【点睛】本题考查反比例函数综合题、矩形的性质、翻折变换、直角三角形中30度角的性质、平行四边形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会用分类讨论的思想思考问题.23、(1);(2)E(-2,-4),4;②存在,;(3)【分析】(1)求出AB两点坐标,利用待定系数法即可求解;(2)设点E的坐标为,当△ABE的面积最大时,点E在抛物线上且距AB最远,此时E所在直线与AB平行,且与抛物线只有一个交点.设点E所在直线为l:y=-x+b,与二次函数联立方程组,根据只有一个交点,得,求出b,进而求出点E坐标;抛物线上直线AB上方还存在其它点M,使△ABM的面积等于中的最大值S,此时点M所在直线与直线AB平行,且与直线l到直线AB距离相等,求出直线解析式,与二次函数联立方程组,即可求解;(3)如图,作交x轴于点G,作FP⊥BG,于P,得到,所以当C、F、P在同一直线上时,有最小值,作CH⊥GB于H,求出CH即可.【详解】解:(1)在中分别令x=0,y=0,可得点A(-4,0),B(0,-4),根据A,B坐标及对称轴为直线,可得方程组解方程组可得∴抛物线的函数表达式为(2)①设点E的坐标为,当△ABE的面积最大时,点E在抛物线上且距AB最远,此时E所在直线与AB平行,且与抛物线只有一个交点.设点E所在直线为l:y=-x+b.联立得方程,消去y得,据题意;解之得,直线l的解析式为y=-x-6,联立方程,解得,∴点E(-2,-4),过E作y轴的平行线可求得△ABE面积的最大值为4.②抛物线上直线AB上方还存在其它点M,使△ABM的面积等于中的最大值S,此时点M所在直线与直线AB平行,且与直线l到直线AB距离相等,易得直线是直线l向上平移4个单位,∴解析式为y=-x-2,与二次函数联立方程组可得方程组解之得∴存在两个点,(3)如图,作交x轴于点G,作FP⊥BG于P,则是直角三角形,∴,∴,∴当C、F、P在同一直线上时,有最小值,作CH⊥GB于H,在中,∵∴,,∵A(-4,0),抛物线对称轴为直线,∴点C坐标为(2,0),∴,∴在中,,∴的最小值为.【点睛】本题为二次函数综合题,考查了待定系数法,二次函数与一元二次方程关系,二次函数与面积问题,三角函数,求两线段和最小值问题.理解好函数与方程(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论