


下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3/3阅卷案例(12分)(2021·新高考卷Ⅰ)已知函数f(x)=xeq(\a\vs4\al\co1(1-lnx)).(1)讨论f(x)的单调性;(2)设a,b为两个不相等的正数,且blna-alnb=a-b,证明:2<eq\f(1,a)+eq\f(1,b)<e.思维导图四字解题读讨论f(x)的单调性第(2)问题设想导数的运算法则,函数的单调性与导数的关系.①变形得eq\f(lna+1,a)=eq\f(lnb+1,b);②设eq\f(1,a)=x1,eq\f(1,b)=x2.算计算f′(x),解f′(x)>(<)0先证:x1+x2>2,再证:x1+x2<e.悟分类讨论,转化与化归转化化归,换元,构造法思维拆解规范答题第1步:求导,判断单调性利用导数运算法则求导,依据f′(x)的符号同f(x)的关系判断单调性,必要时可二次求导.第2步:转化化归对于函数值相等问题,转化为方程的根问题.第3步:分解设eq\f(1,a)=x1,eq\f(1,b)=x2,原不等式等价于2<x1+x2<e.第4步:构建函数结合极值点偏移问题的特点,构造函数F(x)=f(x)-f(2-x)证明不等式x1+x2>2;利用函数结构相同构造函数h(x)=f(x)+x证明不等式x1+x2<e.第5步:得结论结合第3步及第4步得结论.[解](1)因为f(x)=x(1-lnx),所以f(x)的定义域为(0,+∞),f′(x)=1-lnx+x·eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(1,x)))=-lnx.当x∈(0,1)时,f′(x)>0;当x∈(1,+∞)时,f′(x)<0.所以函数f(x)在(0,1)上单调递增,在(1,+∞)上单调递减.……3分(2)由题意,a,b是两个不相等的正数,且blna-alnb=a-b,两边同时除以ab,得eq\f(lna,a)-eq\f(lnb,b)=eq\f(1,b)-eq\f(1,a),即eq\f(lna+1,a)=eq\f(lnb+1,b),即feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,a)))=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,b))).……………4分令x1=eq\f(1,a),x2=eq\f(1,b),由(1)知f(x)在(0,1)上单调递增,在(1,+∞)上单调递减,且当0<x<e时,f(x)>0,当x>e时,f(x)<0,不妨设x1<x2,则0<x1<1<x2<e.要证2<eq\f(1,a)+eq\f(1,b)<e,即证2<x1+x2<e.……………6分先证x1+x2>2:要证x1+x2>2,即证x2>2-x1,因为0<x1<1<x2<e,所以x2>2-x1>1,又f(x)在(1,+∞)上单调递减,所以即证f(x2)<f(2-x1),又f(x1)=f(x2),所以即证f(x1)<f(2-x1),即证当x∈(0,1)时,f(x)-f(2-x)<0.构造函数F(x)=f(x)-f(2-x),则F′(x)=f′(x)+f′(2-x)=-lnx-ln(2-x)=-ln[x(2-x)],当0<x<1时,x(2-x)<1,则-ln[x(2-x)]>0,即当0<x<1时,F′(x)>0,所以F(x)在(0,1)上单调递增,所以当0<x<1时,F(x)<F(1)=0,所以当0<x<1时,f(x)-f(2-x)<0成立,所以x1+x2>2成立.……8分再证x1+x2<e.由(1)知,f(x)的极大值点为x=1,f(x)的极大值为f(1)=1,过点(0,0),(1,1)的直线方程为y=x,设f(x1)=f(x2)=m,当x∈(0,1)时,f(x)=x(1-lnx)>x,直线y=x与直线y=m的交点坐标为(m,m),则x1<m.欲证x1+x2<e,即证x1+x2<m+x2<f(x2)+x2<e,即证当1<x<e时,f(x)+x<e.……………10分构造函数h(x)=f(x)+x,则h′(x)=1-lnx,当1<x<e时,h′(x)>0,所以函数h(x)在(1,e)上单调递增,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电动汽车的商业化运营模式与分析试题及答案
- 家居市场2025年线上线下融合模式创新模式下的家居行业产业创新研究报告
- 电池生产厂家考题试题及答案
- 家具行业设计的企业社会责任与实践探讨试题及答案
- 职业防护测试题及答案
- 建筑施工安全管理信息化在施工现场安全教育与培训中的应用报告
- 西北农林科技大学《计算力学》2023-2024学年第二学期期末试卷
- 全球流媒体市场2025年竞争格局及内容创新模式深度报告
- 电脑采购面试题及答案
- 幼儿园音乐试题及答案
- JB/T 20173-2016辊压干法制粒机
- 外科护理学题库(中专)
- 电动葫芦(行车)检查记录表
- DB2110T 0004-2020 辽阳地区主要树种一元、二元立木材积表
- 100以内进位加法练习题1
- 建设工程施工项目每日“防高坠三检”检查记录表
- 学校体育学(第三版)ppt全套教学课件
- 住建部《建筑业10项新技术(2017版)》解读培训课件
- 基于深度学习的问题链讲座课件(44张PPT)
- 水文学习题和答案解析
- 西安交通大学赵进全模拟电子技术基础第8-9章
评论
0/150
提交评论