下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2023学年广东省广州市广雅中学中考数学最后冲刺浓缩精华卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.如图图形中,是中心对称图形的是()A. B. C. D.2.下列说法错误的是()A.的相反数是2 B.3的倒数是C. D.,0,4这三个数中最小的数是03.估算的运算结果应在(
)A.2到3之间 B.3到4之间C.4到5之间 D.5到6之间4.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣1<x<3,其中正确的个数是()A.1 B.2 C.3 D.45.在中,,,下列结论中,正确的是()A. B.C. D.6.已知x=2﹣3,则代数式(7+43)x2+(2+3)x+3的值是()A.0 B.3 C.2+3 D.2﹣37.如表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲乙丙丁平均数(cm)185180185180方差3.63.67.48.1根据表数据,从中选择一名成绩好且发挥稳定的参加比赛,应该选择()A.甲 B.乙 C.丙 D.丁8.的值是A.±3 B.3 C.9 D.819.方程2x2﹣x﹣3=0的两个根为()A.x1=,x2=﹣1 B.x1=﹣,x2=1 C.x1=,x2=﹣3 D.x1=﹣,x2=310.已知二次函数y=ax2+bx+c(a≠1)的图象如图所示,则下列结论:①a、b同号;②当x=1和x=3时,函数值相等;③4a+b=1;④当y=﹣2时,x的值只能取1;⑤当﹣1<x<5时,y<1.其中,正确的有()A.2个 B.3个 C.4个 D.5个二、填空题(共7小题,每小题3分,满分21分)11.函数y=的定义域是________.12.函数自变量x的取值范围是_____.13.8的算术平方根是_____.14.将多项式xy2﹣4xy+4y因式分解:_____.15.请写出一个开口向下,并且与y轴交于点(0,1)的抛物线的表达式_________16.在实数范围内分解因式:x2y﹣2y=_____.17.已知圆锥的底面圆半径为3cm,高为4cm,则圆锥的侧面积是________cm2.三、解答题(共7小题,满分69分)18.(10分)A、B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系.(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式.(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?19.(5分)图1和图2中,优弧纸片所在⊙O的半径为2,AB=2,点P为优弧上一点(点P不与A,B重合),将图形沿BP折叠,得到点A的对称点A′.发现:(1)点O到弦AB的距离是,当BP经过点O时,∠ABA′=;(2)当BA′与⊙O相切时,如图2,求折痕的长.拓展:把上图中的优弧纸片沿直径MN剪裁,得到半圆形纸片,点P(不与点M,N重合)为半圆上一点,将圆形沿NP折叠,分别得到点M,O的对称点A′,O′,设∠MNP=α.(1)当α=15°时,过点A′作A′C∥MN,如图3,判断A′C与半圆O的位置关系,并说明理由;(2)如图4,当α=°时,NA′与半圆O相切,当α=°时,点O′落在上.(3)当线段NO′与半圆O只有一个公共点N时,直接写出β的取值范围.20.(8分)已知抛物线y=﹣2x2+4x+c.(1)若抛物线与x轴有两个交点,求c的取值范围;(2)若抛物线经过点(﹣1,0),求方程﹣2x2+4x+c=0的根.21.(10分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.22.(10分)为节约用水,某市居民生活用水按阶梯式水价计量,水价分为三个阶梯,价格表如下表所示:某市自来水销售价格表类别月用水量(立方米)供水价格(元/立方米)污水处理费(元/立方米)居民生活用水阶梯一0~18(含18)1.901.00阶梯二18~25(含25)2.85阶梯三25以上5.70(注:居民生活用水水价=供水价格+污水处理费)(1)当居民月用水量在18立方米及以下时,水价是_____元/立方米.(2)4月份小明家用水量为20立方米,应付水费为:18×(1.90+1.00)+2×(2.85+1.00)=59.90(元)预计6月份小明家的用水量将达到30立方米,请计算小明家6月份的水费.(3)为了节省开支,小明家决定每月用水的费用不超过家庭收入的1%,已知小明家的平均月收入为7530元,请你为小明家每月用水量提出建议23.(12分)如图,已知⊙O中,AB为弦,直线PO交⊙O于点M、N,PO⊥AB于C,过点B作直径BD,连接AD、BM、AP.(1)求证:PM∥AD;(2)若∠BAP=2∠M,求证:PA是⊙O的切线;(3)若AD=6,tan∠M=,求⊙O的直径.24.(14分)如图,一次函数y=kx+b与反比例函数y=的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求一次函数y=kx+b和y=的表达式;(2)已知点C在x轴上,且△ABC的面积是8,求此时点C的坐标;(3)反比例函数y=(1≤x≤4)的图象记为曲线C1,将C1向右平移3个单位长度,得曲线C2,则C1平移至C2处所扫过的面积是_________.(直接写出答案)
2023学年模拟测试卷参考答案(含详细解析)一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、D【答案解析】
根据中心对称图形的概念和识别.【题目详解】根据中心对称图形的概念和识别,可知D是中心对称图形,A、C是轴对称图形,D既不是中心对称图形,也不是轴对称图形.故选D.【答案点睛】本题考查中心对称图形,掌握中心对称图形的概念,会判断一个图形是否是中心对称图形.2、D【答案解析】测试卷分析:﹣2的相反数是2,A正确;3的倒数是,B正确;(﹣3)﹣(﹣5)=﹣3+5=2,C正确;﹣11,0,4这三个数中最小的数是﹣11,D错误,故选D.考点:1.相反数;2.倒数;3.有理数大小比较;4.有理数的减法.3、D【答案解析】
解:=,∵2<<3,∴在5到6之间.故选D.【答案点睛】此题主要考查了估算无理数的大小,正确进行计算是解题关键.4、B【答案解析】分析:直接利用二次函数图象的开口方向以及图象与x轴的交点,进而分别分析得出答案.详解:①∵二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,且开口向下,∴x=1时,y=a+b+c,即二次函数的最大值为a+b+c,故①正确;②当x=﹣1时,a﹣b+c=0,故②错误;③图象与x轴有2个交点,故b2﹣4ac>0,故③错误;④∵图象的对称轴为x=1,与x轴交于点A、点B(﹣1,0),∴A(3,0),故当y>0时,﹣1<x<3,故④正确.故选B.点睛:此题主要考查了二次函数的性质以及二次函数最值等知识,正确得出A点坐标是解题关键.5、C【答案解析】
直接利用锐角三角函数关系分别计算得出答案.【题目详解】∵,,∴,∴,故选项A,B错误,∵,∴,故选项C正确;选项D错误.故选C.【答案点睛】此题主要考查了锐角三角函数关系,熟练掌握锐角三角函数关系是解题关键.6、C【答案解析】
把x的值代入代数式,运用完全平方公式和平方差公式计算即可【题目详解】解:当x=2﹣3时,(7+43)x2+(2+3)x+3=(7+43)(2﹣3)2+(2+3)(2﹣3)+3=(7+43)(7-43)+1+3=49-48+1+3=2+3故选:C.【答案点睛】此题考查二次根式的化简求值,关键是代入后利用完全平方公式和平方差公式进行计算.7、A【答案解析】
首先比较平均数,平均数相同时选择方差较小的运动员参加.【题目详解】∵=>=,∴从甲和丙中选择一人参加比赛,∵=<<,∴选择甲参赛,故选A.【答案点睛】此题主要考查了平均数和方差的应用,解题关键是明确平均数越高,成绩越高,方差越小,成绩越稳定.8、C【答案解析】测试卷解析:∵∴的值是3故选C.9、A【答案解析】
利用因式分解法解方程即可.【题目详解】解:(2x-3)(x+1)=0,2x-3=0或x+1=0,所以x1=,x2=-1.故选A.【答案点睛】本题考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).10、A【答案解析】
根据二次函数的性质和图象可以判断题目中各个小题是否成立.【题目详解】由函数图象可得,
a>1,b<1,即a、b异号,故①错误,
x=-1和x=5时,函数值相等,故②错误,
∵-=2,得4a+b=1,故③正确,
由图象可得,当y=-2时,x=1或x=4,故④错误,
由图象可得,当-1<x<5时,y<1,故⑤正确,
故选A.【答案点睛】考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.二、填空题(共7小题,每小题3分,满分21分)11、【答案解析】分析:根据分式有意义的条件是分母不为0,即可求解.详解:由题意得:x-2≠0,即.故答案为点睛:本题考查了使函数有意义的自变量的取值范围的确定.函数是整式型,自变量去全体实数;函数是分式型,自变量是使分母不为0的实数;根式型的函数的自变量去根号下的式子大于或等于0的实数;当函数关系式表示实际问题时,自变量不仅要使函数关系式有意义,还要使实际问题有意义.12、x≥1且x≠1【答案解析】
根据分式成立的条件,二次根式成立的条件列不等式组,从而求解.【题目详解】解:根据题意得:,解得x≥1,且x≠1,即:自变量x取值范围是x≥1且x≠1.故答案为x≥1且x≠1.【答案点睛】本题考查函数自变量的取值范围;分式有意义的条件;二次根式有意义的条件.13、2.【答案解析】测试卷分析:本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.依据算术平方根的定义回答即可.由算术平方根的定义可知:8的算术平方根是,∵=2,∴8的算术平方根是2.故答案为2.考点:算术平方根.14、y(xy﹣4x+4)【答案解析】
直接提公因式y即可解答.【题目详解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案为:y(xy﹣4x+4).【答案点睛】本题考查了因式分解——提公因式法,确定多项式xy2﹣4xy+4y的公因式为y是解决问题的关键.15、(答案不唯一)【答案解析】
根据二次函数的性质,抛物线开口向下a<0,与y轴交点的纵坐标即为常数项,然后写出即可.【题目详解】∵抛物线开口向下,并且与y轴交于点(0,1)∴二次函数的一般表达式中,a<0,c=1,∴二次函数表达式可以为:(答案不唯一).【答案点睛】本题考查二次函数的性质,掌握开口方向、与y轴的交点与二次函数二次项系数、常数项的关系是解题的关键.16、y(x+)(x﹣)【答案解析】
先提取公因式y后,再把剩下的式子写成x2-()2,符合平方差公式的特点,可以继续分解.【题目详解】x2y-2y=y(x2-2)=y(x+)(x-).故答案为y(x+)(x-).【答案点睛】本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.17、15π【答案解析】【分析】设圆锥母线长为l,根据勾股定理求出母线长,再根据圆锥侧面积公式即可得出答案.【题目详解】设圆锥母线长为l,∵r=3,h=4,∴母线l=,∴S侧=×2πr×5=×2π×3×5=15π,故答案为15π.【答案点睛】本题考查了圆锥的侧面积,熟知圆锥的母线长、底面半径、圆锥的高以及圆锥的侧面积公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)L1表示汽车B到甲地的距离与行驶时间的关系;(2)汽车B的速度是1.5千米/分;(3)s1=﹣1.5t+330,s2=t;(4)2小时后,两车相距30千米;(5)行驶132分钟,A、B两车相遇.【答案解析】测试卷分析:(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;
(2)由L1上60分钟处点的坐标可知路程和时间,从而求得速度;
(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析式;
(4)结合(3)中函数图象求得时s的值,做差即可求解;
(5)求出函数图象的交点坐标即可求解.测试卷解析:(1)函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330﹣240)÷60=1.5(千米/分);(3)设L1为把点(0,330),(60,240)代入得所以设L2为把点(60,60)代入得所以(4)当时,330﹣150﹣120=60(千米);所以2小时后,两车相距60千米;(5)当时,解得即行驶132分钟,A、B两车相遇.19、发现:(1)1,60°;(2)2;拓展:(1)相切,理由详见解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【答案解析】
发现:(1)利用垂径定理和勾股定理即可求出点O到AB的距离;利用锐角三角函数的定义及轴对称性就可求出∠ABA′.(2)根据切线的性质得到∠OBA′=90°,从而得到∠ABA′=120°,就可求出∠ABP,进而求出∠OBP=30°.过点O作OG⊥BP,垂足为G,容易求出OG、BG的长,根据垂径定理就可求出折痕的长.拓展:(1)过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.用含30°角的直角三角形的性质可得OD=A'H=A'N=MN=2可判定A′C与半圆相切;(2)当NA′与半圆相切时,可知ON⊥A′N,则可知α=45°,当O′在时,连接MO′,则可知NO′=MN,可求得∠MNO′=60°,可求得α=30°;(3)根据点A′的位置不同得到线段NO′与半圆O只有一个公共点N时α的取值范围是0°<α<30°或45°≤α<90°.【题目详解】发现:(1)过点O作OH⊥AB,垂足为H,如图1所示,∵⊙O的半径为2,AB=2,∴OH==在△BOH中,OH=1,BO=2∴∠ABO=30°∵图形沿BP折叠,得到点A的对称点A′.∴∠OBA′=∠ABO=30°∴∠ABA′=60°(2)过点O作OG⊥BP,垂足为G,如图2所示.∵BA′与⊙O相切,∴OB⊥A′B.∴∠OBA′=90°.∵∠OBH=30°,∴∠ABA′=120°.∴∠A′BP=∠ABP=60°.∴∠OBP=30°.∴OG=OB=1.∴BG=.∵OG⊥BP,∴BG=PG=.∴BP=2.∴折痕的长为2拓展:(1)相切.分别过A'、O作A'H⊥MN于点H,OD⊥A'C于点D.如图3所示,∵A'C∥MN∴四边形A'HOD是矩形∴A'H=O∵α=15°∴∠A'NH=30∴OD=A'H=A'N=MN=2∴A'C与半圆(2)当NA′与半圆O相切时,则ON⊥NA′,∴∠ONA′=2α=90°,∴α=45当O′在上时,连接MO′,则可知NO′=MN,∴∠O′MN=0°∴∠MNO′=60°,∴α=30°,故答案为:45°;30°.(3)∵点P,M不重合,∴α>0,由(2)可知当α增大到30°时,点O′在半圆上,∴当0°<α<30°时点O′在半圆内,线段NO′与半圆只有一个公共点B;当α增大到45°时NA′与半圆相切,即线段NO′与半圆只有一个公共点B.当α继续增大时,点P逐渐靠近点N,但是点P,N不重合,∴α<90°,∴当45°≤α<90°线段BO′与半圆只有一个公共点B.综上所述0°<α<30°或45°≤α<90°.【答案点睛】本题考查了切线的性质、垂径定理、勾股定理、三角函数的定义、30°角所对的直角边等于斜边的一半、翻折问题等知识,正确的作出辅助线是解题的关键.20、(1)c>﹣2;(2)x1=﹣1,x2=1.【答案解析】
(1)根据抛物线与x轴有两个交点,b2-4ac>0列不等式求解即可;
(2)先求出抛物线的对称轴,再根据抛物线的对称性求出抛物线与x轴的另一个交点坐标,然后根据二次函数与一元二次方程的关系解答.【题目详解】(1)解:∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即16+8c>0,解得c>﹣2;(2)解:由y=﹣2x2+4x+c得抛物线的对称轴为直线x=1,∵抛物线经过点(﹣1,0),∴抛物线与x轴的另一个交点为(1,0),∴方程﹣2x2+4x+c=0的根为x1=﹣1,x2=1.【答案点睛】考查了抛物线与x轴的交点问题、二次函数与一元二次方程,解题关键是运用了根与系数的关系以及二次函数的对称性.21、(1)m≠1且m≠;(2)m=-1或m=-2.【答案解析】
(1)由方程有两个不相等的实数根,可得△>1,列出关于m的不等式解之可得答案;(2)解方程,得:,,由m为整数,且方程的两个根均为负整数可得m的值.【题目详解】解:(1)△=-4ac=(3m-2)+24m=(3m+2)≥1当m≠1且m≠时,方程有两个不相等实数根.(2)解方程,得:,,m为整数,且方程的两个根均为负整数,m=-1或m=-2.m=-1或m=-2时,此方程的两个根都为负整数【答案点睛】本题主要考查利用一元二次方程根的情况求参数.22、(1)1.90;(2)112.65元;(3)当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.【答案解析】测试卷分析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可知小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由已知条件可知,用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不会超过25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,即小明家每月的用水量不要超过24立方米.测试卷解析:(1)由表中数据可知,当用水量在18立方米及以下时,水价为1.9元/立方米;(2)由题意可得:小明家6月份的水费是:(1.9+1)×18+(2.85+1)×7+(5.70+1)×5=112.65(元);(3)由题意可知,当用水量为18立方米时,应交水费52.2元,当用水量为25立方米时,应交水费79.15元,而小明家计划的水费不超过75.3元,由此可知他们家的用水量不超过18立方米,而不足25立方米,设他们家的用水量为x立方米,则由题意可得:18×(1.9+1)+(x-18)×(2.85+1)75.3,解得:x24,∴当小明家每月的用水量不要超过24立方米时,水费就不会超过他们家庭总收入的1%.23、(1)证明见解析;(2)证明见解析;(3)1;【答案解析】
(1)根据平行线的判定求出即可;(2)连接OA,求出∠OAP=∠BAP+∠OAB=∠BOC+∠OBC=90°,根据切线的判定得出即可;(3)设BC=x,CM=2x,根据相似三角形的性质和判定求出NC=x,求出MN=2x+x=2.1x,OM=MN=1.21x,OC=0.71x,根据三角形的中位线性质得出0.71x=AD=3,求出x即可.【题目详解】(1)∵BD是直径,∴∠DAB=90°,∵PO⊥AB,∴∠DAB=∠MCB=90°,∴PM∥AD;(2)连接OA,∵OB=OM,∴∠M=∠OBM,∴∠BON=2∠M,∵∠BAP=2∠M,∴∠BON=∠BAP,∵PO⊥AB,∴∠ACO=90°,∴∠AON+∠OAC=90°,∵OA=OB,∴∠BON=∠AON,∴∠BAP=∠AON,∴∠BAP+∠OAC=90°,∴∠OAP=90°,∵OA是半径,∴PA是⊙O的切线;(3)连接BN,则∠MBN=90°.∵tan∠M=,∴=,设BC=x,CM=2x,∵MN是⊙O直径,NM⊥AB,∴∠MBN=∠BCN=∠BCM=90°,∴∠NBC=∠M=90°﹣∠BNC,∴△MBC∽△BNC,∴,∴BC2=NC×MC,∴NC=x,∴MN=2x+x=2.1x,∴OM=MN=1.21x,∴OC=2x﹣1.21x=0.71x,∵O是BD的中点,C是AB的中点,AD=6,∴OC=0.71x=AD=3,解得:x=4,∴MO=1.21x=1.21×4=1,∴⊙O的半径为1.【答案点睛】本题考查了圆周角定理,切线的性质和判定,相似三角形的性质和判定等知识点,能灵活运用知识点进行推理是解此题的关键,此题有一定的难度.24、(1),;(2)点C的坐标
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 委托赞助协议书
- 试点合作协议书
- 学生请长假家长安全协议书
- 学生报读协议书
- 工人进厂协议书
- 2025年技术创新引领智能消防预警系统在智慧工厂安全中的应用可行性研究报告
- 数学对称图形在元青花缠枝莲纹样的设计原理研究课题报告教学研究课题报告
- 医疗行业医生临床诊断及治疗效果绩效考核表
- 2025年输液科护士关于静脉置管穿刺技巧模拟考试试题及答案解析
- 2025献血相关知识试题及答案
- 2025年5年级期末复习-苏教版丨五年级数学上册知识点
- 2025年韩家园林业局工勤岗位工作人员招聘40人备考题库及参考答案详解一套
- 工会工作考试题库
- 四川省达州市达川中学2025-2026学年八年级上学期第二次月考数学试题(无答案)
- 2025陕西西安市工会系统开招聘工会社会工作者61人历年题库带答案解析
- 江苏省南京市秦淮区2024-2025学年九年级上学期期末物理试题
- 债转股转让协议书
- 外卖平台2025年商家协议
- (新教材)2026年人教版八年级下册数学 24.4 数据的分组 课件
- 老年慢性病管理及康复护理
- 2025广西自然资源职业技术学院下半年招聘工作人员150人(公共基础知识)测试题带答案解析
评论
0/150
提交评论