下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年九上数学期末模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.式子有意义的的取值范围()A.x≥4 B.x≥2 C.x≥0且x≠4 D.x≥0且x≠22.抛物线y=﹣(x﹣1)2﹣2的顶点坐标是()A.(1,2)B.(﹣1,﹣2)C.(﹣1,2)D.(1,﹣2)3.一元二次方程的根的情况是()A.有两个相等的实根 B.有两个不等的实根 C.只有一个实根 D.无实数根4.在同一时刻,两根长度不等的竿子置于阳光之下,而它们的影长相等,那么这两根竿子的相对位置是()A.两根都垂直于地面 B.两根平行斜插在地上 C.两根不平行 D.两根平行倒在地上5.二次函数的图象向左平移个单位,得到新的图象的函数表达式是()A. B.C. D.6.如图,在中,∠B=90°,AB=2,以B为圆心,AB为半径画弧,恰好经过AC的中点D,则弧AD与线段AD围成的弓形面积是()A. B. C. D.7.如图,正六边形内接于,连接.则的度数是()A. B. C. D.8.在同一平面直角坐标系中,函数y=ax2+bx与y=bx+a的图象可能是()A. B. C. D.9.如图,为外一点,分别切于点切于点且分别交于点,若,则的周长为()A. B. C. D.10.如图,在直角坐标系中,⊙A的半径为2,圆心坐标为(4,0),y轴上有点B(0,3),点C是⊙A上的动点,点P是BC的中点,则OP的范围是()A. B.2≤OP≤4 C.≤OP≤ D.3≤OP≤411.在△ABC中,tanC=,cosA=,则∠B=()A.60° B.90° C.105° D.135°12.如图,四边形ABCD是⊙O的内接四边形,若⊙O的半径为4,且∠B=2∠D,连接AC,则线段AC的长为()A.4 B.4 C.6 D.8二、填空题(每题4分,共24分)13.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于_____.14.已知x=1是方程x2﹣a=0的根,则a=__.15.如图,AB是⊙O的直径,且AB=4,点C是半圆AB上一动点(不与A,B重合),CD平分∠ACB交⊙O于点D,点I是△ABC的内心,连接BD.下列结论:①点D的位置随着动点C位置的变化而变化;②ID=BD;③OI的最小值为;④ACBC=CD.其中正确的是_____________.(把你认为正确结论的序号都填上)16.如图,把直角尺的角的顶点落在上,两边分别交于三点,若的半径为.则劣弧的长为______.17.方程2x2﹣6=0的解是_____.18.分解因式:2x2﹣8=_____________三、解答题(共78分)19.(8分)解方程:2x2+x﹣6=1.20.(8分)如图,在Rt△ABC中,∠C=90°,BC=8,tanB=,点D在BC上,且BD=AD.求AC的长和cos∠ADC的值.21.(8分)四张质地相同的卡片如图所示.将卡片洗匀后,背面朝上放置在桌面上.(1)求随机抽取一张卡片,恰好得到数字2的概率;(2)小贝和小晶想用以上四张卡片做游戏,游戏规则见信息图.你认为这个游戏公平吗?请用列表法或画树形图法说明理由.22.(10分)有这样一个问题,如图1,在等边中,,为的中点,,分别是边,上的动点,且,若,试求的长.爱钻研的小峰同学发现,可以通过几何与函数相结合的方法来解决这个问题,下面是他的探究思路,请帮他补充完整.(1)注意到为等边三角形,且,可得,于是可证,进而可得,注意到为中点,,因此和满足的等量关系为______.(2)设,,则的取值范围是______.结合(1)中的关系求与的函数关系.(3)在平面直角坐标系中,根据已有的经验画出与的函数图象,请在图2中完成画图.(4)回到原问题,要使,即为,利用(3)中的图象,通过测量,可以得到原问题的近似解为______(精确到0.1)23.(10分)如图,直线AC与⊙O相切于点A,点B为⊙O上一点,且OC⊥OB于点O,连接AB交OC于点D.(1)求证:AC=CD;(2)若AC=3,OB=4,求OD的长度.24.(10分)如图,在△ABC中,D为AC边上一点,∠DBC=∠A.(1)求证:△BDC∽△ABC;(2)若BC=4,AC=8,求CD的长.25.(12分)关于x的一元二次方程为(m-1)x2-2mx+m+1=0(1)求出方程的根;(2)m为何整数时,此方程的两个根都为正整数?26.如图,在平面直角坐标系中,已知点B(-4,2),BA⊥轴于A.(1)画出将△OAB绕原点旋转180°后所得的△OA1B1,并写出点B1的坐标;(2)将△OAB平移得到△O2A2B2,点A的对应点是A2(-2,4),点B的对应点B2,在坐标系中画出△O2A2B2;并写出B2的坐标;(3)△OA1B1与△O2A2B2成中心对称吗?若是,请直接写出对称中心点P的坐标.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,就可以求解.【详解】解:根据题意得:且,解得:且.故选:C.【点睛】本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.本题应注意在求得取值后应排除不在取值范围内的值.2、D【解析】根据顶点式解析式写出顶点坐标即可.【详解】抛物线y=﹣(x﹣1)2﹣2的顶点坐标是(1,﹣2).故选D.【点睛】本题考查了二次函数的性质,熟练掌握利用顶点式解析式求顶点坐标的方法是解题的关键.3、D【分析】先求出的值,再进行判断即可得出答案.【详解】解:一元二次方程x2+2020=0中,
=0-4×1×2020<0,
故原方程无实数根.
故选:D.【点睛】本题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)>0⇔方程有两个不相等的实数根;(2)=0⇔方程有两个相等的实数根;(3)<0⇔方程没有实数根.4、C【分析】在不同时刻,同一物体的影子方向和大小可能不同,不同时刻物体在太阳光下的影子的大小在变,方向也在变,依此进行分析.【详解】在同一时刻,两根竿子置于阳光下,但看到他们的影长相等,那么这两根竿子的顶部到地面的垂直距离相等,而竿子长度不等,故两根竿子不平行,故答案选择C.【点睛】本题考查投影的相关知识,解决此题的关键是掌握平行投影的特点.5、C【分析】根据向左平移横坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.【详解】解:∵二次函数的图象向左平移个单位,∴平移后的抛物线的顶点坐标为(-2,0),∴新的图象的二次函数表达式是:;故选择:C.【点睛】本题考查了二次函数图象与几何变换,此类题目,利用顶点的变化确定函数解析式的变化更简便,平移的规律:左加右减,上加下减.6、B【分析】如图(见解析),先根据圆的性质、直角三角形的性质可得,再根据等边三角形的判定与性质可得,然后根据直角三角形的性质、勾股定理可得,从而可得的面积,最后利用扇形BAD的面积减去的面积即可得.【详解】如图,连接BD,由题意得:,点D是斜边AC上的中点,,,是等边三角形,,,在中,,又是的中线,,则弧AD与线段AD围成的弓形面积为,故选:B.【点睛】本题考查了扇形的面积公式、等边三角形的判定与性质、直角三角形的性质、勾股定理等知识点,通过作辅助线,构造等边三角形和扇形是解题关键.7、C【解析】根据正六边形的内角和求得∠BCD,然后根据等腰三角形的性质即可得到结论.【详解】解:∵在正六边形ABCDEF中,∠BCD==120°,BC=CD,∴∠CBD=30°,
故选:C.【点睛】本题考查的是正多边形和圆、等腰三角形的性质,三角形的内角和,熟记多边形的内角和是解题的关键.8、C【解析】试题解析:A、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,对称轴x=﹣<0,应在y轴的左侧,故不合题意,图形错误.B、对于直线y=bx+a来说,由图象可以判断,a<0,b<0;而对于抛物线y=ax2+bx来说,图象应开口向下,故不合题意,图形错误.C、对于直线y=bx+a来说,由图象可以判断,a<0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,对称轴x=﹣位于y轴的右侧,故符合题意,D、对于直线y=bx+a来说,由图象可以判断,a>0,b>0;而对于抛物线y=ax2+bx来说,图象开口向下,a<0,故不合题意,图形错误.故选C.考点:二次函数的图象;一次函数的图象.9、C【分析】根据切线长定理得到PB=PA、CA=CE,DE=DB,根据三角形的周长公式计算即可.【详解】解:∵PA、PB分别切⊙O于点A、B,
∴PB=PA=4,
∵CD切⊙O于点E且分别交PA、PB于点C,D,
∴CA=CE,DE=DB,
∴△PCD的周长=PC+PD+CD=PC+CA+PD+DB=PA+PB=8,
故选:C.【点睛】本题考查的是切线长定理的应用,切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线,平分两条切线的夹角.10、A【分析】如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,由勾股定理可求B'A=5,由三角形中位线定理可求B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,即可求解.【详解】解:如图,在y轴上取点B'(0,﹣3),连接B'C,B'A,∵点B(0,3),B'(0,﹣3),点A(4,0),∴OB=OB'=3,OA=4,∴,∵点P是BC的中点,∴BP=PC,∵OB=OB',BP=PC,∴B'C=2OP,当点C在线段B'A上时,B'C的长度最小值=5﹣2=3,当点C在线段B'A的延长线上时,B'C的长度最大值=5+2=7,∴,故选:A.【点睛】本题考查了三角形中位线定理,勾股定理,平面直角坐标系,解决本题的关键是正确理解题意,熟练掌握三角形中位线定理的相关内容,能够得到线段之间的数量关系.11、C【分析】直接利用特殊角的三角函数值得出∠C=30°,∠A=45°,进而得出答案.【详解】解:∵tanC=,cosA=,
∴∠C=30°,∠A=45°,
∴∠B=180°-∠C-∠A=105°.
故选:C.【点睛】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.12、B【分析】连接OA,OC,利用内接四边形的性质得出∠D=60°,进而得出∠AOC=120°,利用含30°的直角三角形的性质解答即可.【详解】连接OA,OC,过O作OE⊥AC,∵四边形ABCD是⊙O的内接四边形,∠B=2∠D,∴∠B+∠D=3∠D=180°,解得:∠D=60°,∴∠AOC=120°,在Rt△AEO中,OA=4,∴AE=2,∴AC=4,故选:B.【点睛】此题考查内接四边形的性质,关键是利用内接四边形的性质得出∠D=60°.二、填空题(每题4分,共24分)13、15或10【分析】作AD⊥BC交BC(或BC延长线)于点D,分AB、AC位于AD异侧和同侧两种情况,先在Rt△ABD中求得AD、BD的值,再在Rt△ACD中利用勾股定理求得CD的长,继而就两种情况分别求出BC的长,根据三角形的面积公式求解可得.【详解】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=ABsinB=5,BD=ABcosB=5,在Rt△ACD中,∵AC=2,∴CD=,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD-CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握三角函数的运用、分类讨论思想的运算及勾股定理.14、1【分析】把x=1代入方程x2﹣a=0得1﹣a=0,然后解关于a的方程即可.【详解】解:把x=1代入方程x2﹣a=0得1﹣a=0,解得a=1.故答案为1.【点睛】本题考查了一元二次方程的解:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15、②④【分析】①在同圆或等圆中,根据圆周角相等,则弧相等可作判断;②连接IB,根据点I是△ABC的内心,得到,可以证得,即有,可以判断②正确;③当OI最小时,经过圆心O,作,根据等腰直角三角形的性质和勾股定理,可求出,可判断③错误;④用反证法证明即可.【详解】解:平分,AB是⊙O的直径,,,是的直径,是半圆的中点,即点是定点;故①错误;如图示,连接IB,∵点I是△ABC的内心,∴又∵,∴即有∴,故②正确;如图示,当OI最小时,经过圆心O,过I点,作,交于点∵点I是△ABC的内心,经过圆心O,∴,∵∴是等腰直角三角形,又∵,∴,设,则,,∴,解之得:,即:,故③错误;假设,∵点C是半圆AB上一动点,则点C在半圆AB上对于任意位置上都满足,如图示,当经过圆心O时,,,∴与假设矛盾,故假设不成立,∴故④正确;综上所述,正确的是②④,故答案是:②④【点睛】此题考查了三角形的内心的定义和性质,等腰直角三角形的判定与性质,三角形外接圆有关的性质,角平分线的定义等知识点,熟悉相关性质是解题的关键.16、【分析】连接OB、OC,如图,先根据圆周角定理求出∠BOC的度数,再根据弧长公式计算即可.【详解】解:连接OB、OC,如图,∵∠A=45°,∴∠BOC=90°,∴劣弧的长=.故答案为:.【点睛】本题考查了圆周角定理和弧长公式的计算,属于基础题型,熟练掌握基本知识是解题关键.17、x1=,x2=﹣【解析】此题通过移项,然后利用直接开平方法解方程即可.【详解】方程2x2﹣6=0,即x2=3,开方得:x=±,解得:x1=,x2=﹣,故答案为:x1=,x2=﹣【点睛】此题主要考查了一元二次方程的解法—直接开平方法,比较简单.18、2(x+2)(x﹣2)【分析】先提公因式,再运用平方差公式.【详解】2x2﹣8,=2(x2﹣4),=2(x+2)(x﹣2).【点睛】考核知识点:因式分解.掌握基本方法是关键.三、解答题(共78分)19、x1=1.5,x2=﹣2.【分析】利用因式分解法进行解方程即可.【详解】解:因式分解得:,可得或,解得:,【点睛】本题主要考察因式分解法解方程,熟练运用因式分解是关键.20、AC=1;cos∠ADC=【详解】解:在Rt△ABC中,∵BC=8,,∴AC=1.设AD=x,则BD=x,CD=8-x,由勾股定理,得(8-x)2+12=x2.解得x=3.∴.21、(1)P(抽到数字2)=;(2)游戏不公平,图表见解析.【详解】试题分析:(1)根据概率公式即可求解;(2)利用列表法,求得小贝胜与小晶胜的概率,比较即可游戏是否公平.试题解析:(1)P(抽到数字2)=;(2)公平.列表:
2
2
3
6
2
(2,2)
(2,2)
(2,3)
(2,6)
2
(2,2)
(2,2)
(2,3)
(2,6)
3
(3,2)
(3,2)
(3,3)
(3,6)
6
(6,2)
(6,2)
(6,3)
(6,6)
由上表可以看出,可能出现的结果共有16种,它们出现的可能性相同,所有的结果中,满足两位数不超过32的结果有10种.所以P(小贝胜)=,P(小晶胜)=.所以游戏不公平.考点:游戏公平性.22、(1);(2),;(3)答案见解析;(4)1.1.【分析】(1)利用相似三角形的性质即可解决问题.
(2)求出当点F与点A重合时BE的值即可判断x的取值范围.
(3)利用描点法画出函数图象即可.
(4)画出两个函数图象,量出点P的横坐标即可解决问题.【详解】解:(1)由,可得,∵,∴.故答案为:(2)由题意:.∵由,可得,∵,,.∴,∴.故答案为:;.(3)函数图象如图所示:(4)观察图象可知两个函数的交点P的横坐标约为1.1,故BE=1.1
故答案为1.1.【点睛】本题属于一次函数综合题,考查了相似三角形的判定和性质,函数图象等知识,学会利用图象法解决问题是解题的关键.23、(1)见解析;(1)1【分析】(1)由AC是⊙O的切线,得OA⊥AC,结合OD⊥OB,OA=OB,得∠CDA=∠DAC,进而得到结论;(1)利用勾股定理求出OC,即可解决问题.【详解】(1)∵AC是⊙O的切线,∴OA⊥AC,∴∠OAC=90°,即:∠OAD+∠DAC=90°,∵OD⊥OB,∴∠DOB=90°,∴∠BDO+∠B=90°,∵
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学生桌椅买卖合同范本
- 抖音佣金服务合同范本
- 委托贸易进口合同范本
- 广告物料制作协议合同
- 户外广告清洗合同范本
- 对外贸易合同范本范本
- 夫妻贷款买房合同范本
- 幼教国培语言领域讲座教案
- 人教版五年级下册语文教案燕子(2025-2026学年)
- 渗压计测压管施工方案试卷教案
- 电气工程师生涯人物访谈报告
- 职位调动申请表模板
- 2022年内蒙古交通运输厅所属事业单位考试真题及答案
- 选词填空(试题)外研版英语五年级上册
- 露地胡萝卜秋季栽培
- 海水淡化PX能量回收装置维护说明书
- 历年天津理工大学高数期末考试试卷及答案
- 妇产科学(第9版)第二章女性生殖系统解剖
- 中医经络之-特定穴课件
- GB/T 9122-2000翻边环板式松套钢制管法兰
- GB/T 16895.6-2014低压电气装置第5-52部分:电气设备的选择和安装布线系统
评论
0/150
提交评论