版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题34立体几何中二面角的计算问题【高考真题】1.(2022新高考Ⅰ卷)如图,直三棱柱的体积为4,的面积为.
(1)求A到平面的距离;(2)设D为的中点,,平面平面,求二面角的正弦值.2.(2022新高考Ⅱ卷)如图,是三棱锥的高,,,E是的中点.(1)证明:平面;(2)若,,,求二面角的正弦值.【方法总结】1.二面角(1)如图①,AB,CD是二面角α-l-β的两个面内与棱l垂直的直线,则二面角的大小θ=<eq\o(AB,\s\up6(→)),eq\o(CD,\s\up6(→))>.(2)如图②③,n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则二面角的大小θ满足|cosθ|=|cos<n1,n2>|,二面角的平面角大小是向量n1与n2的夹角(或其补角).2.平面与平面的夹角如图,平面α与平面β相交,形成四个二面角,我们把四个二面角中不大于90°的二面角称为平面α与平面β的夹角.若平面α,β的法向量分别是n1和n2,则平面α与平面β的夹角即为向量n1和n2的夹角或其补角.设平面α与平面β的夹角为θ,则cosθ=|cos<n1,n2>|=eq\f(|n1·n2|,|n1||n2|).3.利用空间向量计算二面角大小的常用方法(1)找法向量:分别求出二面角的两个半平面所在平面的法向量,然后通过两个平面的法向量的夹角得到二面角的大小,但要注意结合实际图形判断所求角的大小;(2)找与棱垂直的方向向量:分别在二面角的两个半平面内找到与棱垂直且以垂足为起点的两个向量,则这两个向量的夹角的大小就是二面角的大小.【题型突破】1.(2020·全国Ⅲ改编)如图,在长方体ABCD-A1B1C1D1中,点E,F分别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.(1)证明:点C1在平面AEF内;(2)若AB=2,AD=1,AA1=3,求平面AEF与平面EFA1夹角的正弦值.2.(2019·全国Ⅲ)图1是由矩形ADEB,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连接DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B-CG-A的大小.3.(2019·全国Ⅱ)如图,长方体ABCD-A1B1C1D1的底面ABCD是正方形,点E在棱AA1上,BE⊥EC1.(1)证明:BE⊥平面EB1C1;(2)若AE=A1E,求二面角B-EC-C1的正弦值.4.(2019·全国Ⅰ改编)如图,直四棱柱ABCD-A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求平面AMA1与平面MA1N夹角的正弦值.5.(2020·全国Ⅰ)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE=AD.△ABC是底面的内接正三角形,P为DO上一点,PO=eq\f(\r(6),6)DO.(1)证明:PA⊥平面PBC;(2)求二面角B-PC-E的余弦值.6.(2021·全国新Ⅱ)在四棱锥Q-ABCD中,底面ABCD是正方形,若AD=2,QD=QA=eq\r(5),QC=3.(1)证明:平面QAD⊥平面ABCD;(2)求二面角B-QD-A的平面角的余弦值.7.(2021·全国乙)如图,四棱锥P—ABCD的底面是矩形,PD⊥底面ABCD,PD=DC=1,M为BC的中点,且PB⊥AM.(1)求BC;(2)求二面角A-PM-B的正弦值.8.(2018·全国Ⅲ)如图,边长为2的正方形ABCD所在的平面与半圆弧eq\o\ac(CD,\s\up8(︵))所在平面垂直,M是eq\o\ac(CD,\s\up8(︵))上异于C,D的点.(1)证明:平面AMD⊥平面BMC;(2)当三棱锥M-ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.9.(2021·全国新Ⅰ)如图,在三棱锥A-BCD中,平面ABD⊥平面BCD,AB=AD,O为BD的中点.(1)证明:OA⊥CD;(2)若△OCD是边长为1的等边三角形,点E在棱AD上,DE=2EA,且二面角E-BC-D的大小为45°,求三棱锥A-BCD的体积.10.(2021·全国甲)已知直三棱柱ABC-A1B1C1中,侧面AA1B1B为正方形,AB=BC=2,E,F分别为AC和CC1的中点,D为棱A1B1上的点,BF⊥A1B1.(1)证明:BF⊥DE;(2)当B1D为何值时,面BB1C1C与面DFE所成的二面角的正弦值最小?11.(2021·北京)已知正方体ABCD-A1B1C1D1,点E为A1D1中点,直线B1C1交平面CDE于点F.(1)证明:点F为B1C1的中点;(2)若点M为棱A1B1上一点,且二面角M-CF-E的余弦值为eq\f(\r(5),3),求eq\f(A1M,A1B1)的值.12.如图所示的几何体由平面PECF截棱长为2的正方体得到,其中P,C为原正方体的顶点,E,F为原正方体侧棱长的中点,正方形ABCD为原正方体的底面,G为棱BC上的动点.(1)求证:平面APC⊥平面PECF;(2)设eq\o(BG,\s\up7())=λeq\o(BC,\s\up7())(0≤λ≤1),当λ为何值时,平面EFG与平面ABCD所成的角为eq\f(π,3)?13.如图,已知直三棱柱ABC-A1B1C1中,AA1=AB=AC=1,AB⊥AC,M,N,Q分别是CC1,BC,AC的中点,点P在直线A1B1上运动,且eq\o(A1P,\s\up6(→))=λeq\o(A1B1,\s\up6(→))(λ∈[0,1]).(1)证明:无论λ取何值,总有AM⊥平面PNQ;(2)是否存在点P,使得平面PMN与平面ABC的夹角为60°?若存在,试确定点P的位置,若不存在,请说明理由.14.已知在四棱锥P-ABCD中,平面PDC⊥平面ABCD,AD⊥DC,AB∥CD,AB=2,DC=4,E为PC的中点,PD=PC,BC=2eq\r(2).(1)求证:BE∥平面PAD;(2)若PB与平面ABCD所成角为45°,点P在平面ABCD上的射影为O,问:BC上是否存在一点F,使平面POF与平面PAB所成的角为60°?若存在,试求点F的位置;若不存在,请说明理由.15.如图所示,在梯形ABCD中,AB∥CD,∠BCD=120°,四边形ACFE为矩形,且CF⊥平面ABCD,AD=CD=BC=CF.(1)求证:EF⊥平面BCF;(2)点M在线段EF上运动,当点M在什么位置时,平面MAB与平面FCB所成的锐二面角最大,并求此时二面角的余弦值.16.如图所示,正方形AA1D1D与矩形ABCD所在平面互相垂直,AB=2AD=2,点E为AB的中点.(1)求证:BD1∥平面A1DE;(2)设在线段AB上存在点M,使二面角D1-MC-D的大小为eq\f(π,6),求此时AM的长及点E到平面D1MC的距离.17.(2017·全国Ⅱ)如图,四棱锥P-ABCD中,侧面PAD为等边三角形且垂直于底面ABCD,AB=BC=eq\f(1,2)AD,∠BAD=∠ABC=90°,E是PD的中点.(1)证明:直线CE∥平面PAB;(2)点M在棱PC上,且直线BM与底面ABCD所成角为45°,求二面角M-AB-D的余弦值.18.如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠ABC=60°,AB=2BC=2CD,四边形DCEF是正方形,N,G分别是线段AB,CE的中点.(1)求证:NG∥平面ADF;(2)设二面角A-CD-F的大小为θeq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2)<θ<π)),当θ为何值时,二面角A-BC-E的余弦值为eq\f(\r(13),13)?19.已知三棱锥P-ABC(如图1)的平面展开图(如图2)中,四边形ABCD为边长等于eq\r(2)的正方形,△ABE和△BCF均为正三角形.在三棱锥P-ABC中:(1)证明:平面PAC⊥平面ABC;(2)若点M在棱PA上运动,当直线BM与平面PAC所成的角最大时,求二面角P-BC-M的余弦值.20.如图所示,在四棱锥P-ABCD中,侧面PAD⊥底面ABCD,侧
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手术室管理与护理技术
- 2026年新疆职业大学单招综合素质笔试备考试题附答案详解
- 2026年河北传媒学院单招综合素质考试备考试题带答案解析
- 机器人辅助微创手术技术
- 医疗护理理论与实践创新
- 医院保卫人员职业素养
- 医院精神科护理职业行为准则
- 医疗行业医护人员职业发展规划与培训
- 财政评审课件
- 2026年哈尔滨城市职业学院高职单招职业适应性测试参考题库有答案解析
- 四省天一联考2025-2026学年高三上学期1月月考物理试题
- 2026国企综合基础知识题库(附答案)
- 王昭君课件教学课件
- 2025年福建泉州惠安县宏福殡仪服务有限公司招聘5人笔试考试参考题库及答案解析
- 2026年教师资格之中学教育知识与能力考试题库300道含答案(a卷)
- 肝硬化顽固性腹水个案护理
- 2026年上半年西藏省中小学教师资格考试(笔试)备考题库附答案(培优a卷)
- 《短视频制作与运营》教案 项目5 短视频剪辑 (剪映)
- 2025年11月5日更新的REACH第35批251项高度关注物质SVHC清单
- 2023年和田地区直遴选考试真题汇编附答案解析
- 《5G无线网络规划部署》课件-17、5G RF优化流程
评论
0/150
提交评论