江西省上饶市农业中学高二数学文联考试题含解析_第1页
江西省上饶市农业中学高二数学文联考试题含解析_第2页
江西省上饶市农业中学高二数学文联考试题含解析_第3页
江西省上饶市农业中学高二数学文联考试题含解析_第4页
江西省上饶市农业中学高二数学文联考试题含解析_第5页
免费预览已结束,剩余1页可下载查看

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省上饶市农业中学高二数学文联考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.已知F是双曲线的右焦点,点M在C的右支上,坐标原点为O,若,且,则C的离心率为(

)A. B. C.2 D.参考答案:D【分析】设双曲线的左焦点为运用余弦定理可得,再由双曲线的定义可得,即为,运用离心率公式计算即可得到所求值.【详解】设双曲线的左焦点为由题意可得,,即有,即有,由双曲线的定义可得,即为,即有,可得.故选:D.【点睛】本题考查双曲线的离心率的求法,注意运用余弦定理和双曲线的定义,考查运算能力,属于中档题.2.若直线y=x+b与曲线有公共点,则b的取值范围是()A.[,] B.[,3] C.[﹣1,] D.[,3]参考答案:D【考点】函数与方程的综合运用.【分析】本题要借助图形来求参数b的取值范围,曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,画出图形即可得出参数b的范围.【解答】解:曲线方程可化简为(x﹣2)2+(y﹣3)2=4(1≤y≤3),即表示圆心为(2,3)半径为2的半圆,如图依据数形结合,当直线y=x+b与此半圆相切时须满足圆心(2,3)到直线y=x+b距离等于2,即解得或,因为是下半圆故可知(舍),故当直线过(0,3)时,解得b=3,故,故选D.【点评】考查方程转化为标准形式的能力,及借助图形解决问题的能力.本题是线与圆的位置关系中求参数的一类常见题型.3.已知点,,三点共线,那么的值分别是

A.,4

B.1,8C.,-4

D.-1,-8参考答案:C4.在空间中,已知是直线,是平面,且,则的位置关系是

(A)平行

(B)相交

(C)异面

(D)平行或异面参考答案:D5.在锐角三角形中,a、b、c分别是内角A、B、C的对边,设B=2A,则的取值范围是(

A.(-2,2)

B.(0,2)

C.(,2)

D.(,)参考答案:C6.不等式x(x﹣1)>0的解集是()A.(﹣∞,0) B.(0,1) C.(1,+∞) D.(﹣∞,0)∪(1,+∞)参考答案:D【考点】一元二次不等式的解法.【分析】可以先求出方程x(x﹣1)=0的根,根据一元二次不等式的解法,进行求解;【解答】解:x(x﹣1)=0,可得x=1或0,不等式x(x﹣1)>0,解得{x|x>1或x<0},故选D7.已知双曲线﹣=1的一个焦点在直线x+y=5上,则双曲线的渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x参考答案:B【分析】根据题意,由双曲线的方程可以确定其焦点在位置,由直线的方程可得直线与x轴交点的坐标,即可得双曲线焦点的坐标,由双曲线的几何性质可得9+m=25,解可得m的值,即可得双曲线的标准方程,进而由双曲线的渐近线方程计算可得答案.【解答】解:根据题意,双曲线的方程为﹣=1,则其焦点在x轴上,直线x+y=5与x轴交点的坐标为(5,0),则双曲线的焦点坐标为(5,0),则有9+m=25,解可得,m=16,则双曲线的方程为:﹣=1,其渐近线方程为:y=±x,故选:B.8.命题“”的否定为A. B.

C. D.参考答案:B9.等差数列的前n项和为,若,则A、21B、24

C、28

D、7(

)参考答案:C略10.若且,则下列四个数中最大的是

A.

B.C.

2abD.参考答案:C略二、填空题:本大题共7小题,每小题4分,共28分11.已知复数z=x+yi(x,y∈R)满足条件|z﹣4i|=|z+2|,则2x+4y的最小值是

.参考答案:【考点】7F:基本不等式.【分析】利用复数的运算法则和模的计算公式可得x+2y=3,再利用基本不等式的性质和指数的运算性质即可得出.【解答】解:∵复数z=x+yi(x,y∈R)满足条件|z﹣4i|=|z+2|,∴|x+yi﹣4i|=|x+yi+2|,∴|x+(y﹣4)i|=|x+2+yi|,∴,化为x+2y=3.则2x+4y≥2=2=4,因此2x+4y的最小值是.故答案为:.【点评】本题考查了复数的运算法则、模的计算公式、基本不等式的性质和指数的运算性质,属于中档题.12.用秦九韶算法计算函数时的函数值,其中=

参考答案:7略13.直线是曲线的一条切线,则实数b=

参考答案:略14.下述程序的表达式为s=__________________.参考答案:略15.的单调递减区间为

;参考答案:)()略16.如图,在四面体ABCD中,E,F分别为AB,CD的中点,过EF任作一个平面分别与直线BC,AD相交于点G,H,则下列结论正确的是___________.①对于任意的平面,都有直线GF,EH,BD相交于同一点;②存在一个平面,使得点G在线段BC上,点H在线段AD的延长线上;③对于任意的平面,都有;④对于任意的平面,当G,H在线段BC,AD上时,几何体AC-EGFH的体积是一个定值.参考答案:③④【分析】当分别为中点时,可知三线互相平行,排除①;若三线相交,交点必在上,可排除②;取中点,利用线面平行判定定理可证得平面,平面,再结合为中点可得到平面的距离相等,进一步得到到直线的距离相等,从而证得面积相等,③正确;首先通过临界状态与重合,与重合时,求得所求体积为四面体体积一半;当不位于临界状态时,根据③的结论可证得,从而可知所求体积为四面体体积一半,进而可知为定值,④正确.【详解】当分别为中点时,,则①错误若三线相交,则交点不存在在线段上,在线段延长线上的情况,则②错误取中点,如图所示:分别为中点

又平面,平面

平面同理可得:平面到平面的距离相等;到平面的距离相等又为中点

到平面的距离相等到平面的距离相等连接交于,则为中点

到距离相等,则③正确当与重合,与重合时,此时几何体体积为三棱锥的体积为中点

三棱锥的体积为四面体体积的一半当如图所示时,由③可知又为中点

到截面的距离相等

综上所述,几何体的体积为四面体体积的一半,为定值,则④正确本题正确结果:③④【点睛】本题考查立体几何中的截面问题,涉及到几何体体积的求解、点到面的距离、直线交点问题等知识;要求学生对于空间中的直线、平面位置关系等知识有较好的理解,对学生的空间想象能力和逻辑推理能力有较高的要求,属于难题.

17.已知数列{}的通项公式=3-26,前项和为,则当最小时,=

参考答案:8三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.设命题p:实数x满足x2﹣4ax+3a2<0,其中a>0,命题q:实数x满足.(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.参考答案:【考点】充分条件;命题的真假判断与应用.【分析】(1)p∧q为真,即p和q均为真,分别解出p和q中的不等式,求交集即可;(2)﹁p是﹁q的充分不必要条件?q是p的充分不必要条件,即q?p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.【解答】解:(1)a=1时,命题p:x2﹣4x+3<0?1<x<3命题q:??2<x≤3,p∧q为真,即p和q均为真,故实数x的取值范围是2<x<3(2)﹁p是﹁q的充分不必要条件?q是p的充分不必要条件,即q?p,反之不成立.即q中的不等式的解集是p中的不等式解集的子集.由(1)知命题q:2<x≤3,命题p:实数x满足x2﹣4ax+3a2<0?(x﹣a)(x﹣3a)<0由题意a>0,所以命题p:a<x<3a,所以,所以1<a≤2【点评】本题考查复合命题的真假、充要条件的判断、解二次不等式等知识,考查知识点较多,但难度不大.19.(本小题满分13分)用数字0、1、3、4、5、8组成没有重复数字的四位数.(Ⅰ)可以组成多少个不同的四位偶数?(Ⅱ)可以组成多少个不同的能被5整除的四位数?参考答案:(Ⅰ)偶数个数有;(Ⅱ)被5整除的四位数有.20.已知椭圆C:的左、右焦点为F1,F2,且半焦距为1,直线l经过点F2,当l垂直于x轴时,与椭圆C交于A1,B1两点,且.(1)求椭圆C的方程;(2)当直线l不与x轴垂直时,与椭圆C相交于A2,B2两点,取的取值范围.参考答案:(1);(2)【分析】(1)由c=1,根据椭圆的通径公式及a2﹣b2=c2,求得a和b的值,即可求得椭圆的方程;(2)分类讨论,设直线方程,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,即可求得?的取值范围.【详解】由题意可知:,由椭圆的通径公式可知:,即,,解得:,,椭圆的标准方程:;由可知椭圆的右焦点,当直线l与x轴不重合时,设直线l方程,,,联立直线与椭圆方程,整理得:,则,,,,,当直线l与x轴重合时,则,,则,的取值范围【点睛】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,向量数量积的坐标运算,考查分类讨论思想,属于中档题.21.根据下列条件,分别写出椭圆的标准方程:(1)与椭圆有公共焦点,且过M(3,﹣2);(2)中心在原点,焦点在坐标轴上,且经过两点和.参考答案:【考点】椭圆的标准方程.【分析】(1)利用椭圆的定义求出a,可得b,即可求出椭圆的标准方程;(2)利用待定系数法,求出椭圆的标准方程.【解答】解:(1)椭圆的焦点坐标为(,0),∵椭圆过M(3,﹣2),∴2a=+=2,∴a=,b=,∴椭圆的标准方程为;(2)设椭圆方程为mx2+ny2=1(m>0,n>0).∵椭圆经过两点和,∴,∴m=,n=,∴椭圆的标准方程为.22.某糖果厂生产A、B两种糖果,A种糖果每箱可获利润40元,B种糖果每箱可获利润50元.其生产过程分混合、烹调、包装三道工序.下表为每箱糖果生产过程中所需平均时间(单位:min).

混合烹调包装A153B241每种糖果的生产过程中,混合的设备至多用机器12h,烹调的设备最多只能用机器3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论